

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

AUTOMATED ALERTING FOR BLACK HOLE ROUTING

by

Vinay Puri

September 2007

 Thesis Co-Advisors: Geoffrey Xie
 J. D. Fulp

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Automated Alerting for Black Hole Routing
6. AUTHOR(S) Vinay Puri

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Distributed/Denial of Service (D/DoS) attacks are the most common and easy-to-launch attacks against a
computer or network. Once a D/DoS attack is recognized, there are several methods available to mitigate its impact.
One of the methods is to drop the attacker's traffic at the edge of the network via Null Routing-also called Black Hole
Routing (BHR). BHR is more efficient than the creation and processing of access control lists. Prior work has
validated the effectiveness of BHR in mitigating D/DoS attacks in a setting where the defense is activated manually.
This research built upon that work and developed a proof-of-concept automated BHR process integrated with Snort,
an open source Intrusion Detection System (IDS), to facilitate a faster reaction to a D/DoS attack. A real test bed
consisting of Cisco routers was created to evaluate the performance of the developed system. The results
demonstrated that the automation of BHR is both possible and desirable in mitigating D/DoS attacks.

15. NUMBER OF
PAGES

139

14. SUBJECT TERMS: Automated Alerting for Black Hole Routing, Black Hole Routing, Intrusion
Detection System(IDS), Automation of Black Hole Routing, DDoS Attacks, Network Security, ISP
Network Security, Snort , Null Routing, Customer Triggered Black Hole Routing, Mitigating DDoS
attacks, BGP, iBGP. 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AUTOMATED ALERTING FOR BLACK HOLE ROUTING

Vinay Puri
Squadron Leader, Indian Air Force

B.E., Manipal Institute of Technology, Manipal, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION WARFARE

and

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2007

Author: Vinay Puri

Approved by: Geoffrey Xie, Ph.D.

Thesis Co- Advisor

J. D. Fulp
Thesis Co-Advisor

Dan C. Boger, Ph.D.
Chairman, Department of Information Sciences

Peter J. Denning, Ph.D.
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Distributed/Denial of Service (D/DoS) attacks are the most common and easy-to-

launch attacks against a computer or network. Once a D/DoS attack is recognized, there

are several methods available to mitigate its impact. One of the methods is to drop the

attacker's traffic at the edge of the network via Null Routing-also called Black Hole

Routing (BHR). BHR is more efficient than the creation and processing of access control

lists. Prior work has validated the effectiveness of BHR in mitigating D/DoS attacks in a

setting where the defense is activated manually. This research built upon that work and

developed a proof-of-concept automated BHR process integrated with Snort, an open

source Intrusion Detection System (IDS), to facilitate a faster reaction to a D/DoS attack.

A real test bed consisting of Cisco routers was created to evaluate the performance of the

developed system. The results demonstrated that the automation of BHR is both possible

and desirable in mitigating D/DoS attacks.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. DISTRIBUTED/DENIAL OF SERVICE ATTACKS..................................2
B. BLACK HOLE ROUTING...3
C. ADVANTAGES OF BHR ...4
D. PREVIOUS RESEARCH..6

1. Lab Setup/Test Bed..6
a. Lab Setup in Kleffman’s Research...6
b. Lab Setup in Sramatelos’ Research ...7

2. Research Conclusions ..8
a. Kleffman’s Research Conclusions ...8
b. Stamatelatos’ Research Conclusions8

E. COMMENTS..8

II. METHODS FOR BHR..11
A. INITIAL PREPARATION FOR ACHIEVING BHR................................11
B. METHODS FOR BHR..12

1. Remote-Triggered Destination-Based BHR12
2. Remote-Triggered Source-Based BHR..13
3. Customer-Triggered BHR...15

C. AUTOMATING BHR AND ITS ADVANTAGES16

III. SYSTEM ENGINEERING APPROACH: AUTOMATING BHR
(METHODOLOGY FOLLOWED) ...19
A. ADDRESSABLE REQUIREMENT USING THE TOP-DOWN

APPROACH...19
B. ADDRESSABLE REQUIREMENT USING BOTTOM-UP

APPROACH...21
C. ANTICIPATED LIFE-CYCLE OF THIS WORK.....................................24

IV. IMPLEMENTATION AND VALIDATION...25
A. REMOTE (NIDS) VS. CUSTOMER (HIDS) ALERTING........................25

1. What is an Intrusion Detection System (IDS)?25
2. Reliability of NIDS vs. HIDS...26
3. Scalability of Network ...27

B. WHICH IDS BE SELECTED FOR THIS RESEARCH?28
C. IDS MARKET SURVEY (WHAT’S AVAILABLE)..................................29

1. Market Survey..29
2. Signature- vs. Behavior-Based Detection...30

a. Signature-Based Detection ...30
b. Behavior-Based Detection ..31

3. Comparison (Advantages/Disadvantages)31
4. Detection Method for Our Research ..32
5. Optimum Alerter Selection ...32

a. Additional Market Survey...32

 viii

b. Optimum Alerter Selected...33
D. ALERT NOTIFICATION OF TRIGGER ROUTER................................34

1. The BGP Protocol ..34
2. The iBGP Protocol ...35

E. ROUTE UPDATE MESSAGE ...38
1. How to Achieve Automation/Scripting of Transmitted Alert........39

a. Plug-in ...39
b. Client-Server Model ..40
c. Search and Destroy ...41

2. Alerter-to-Trigger-Router Channel ...42
3. Advertisement Channel ...42

F. TEST NETWORK CONFIGURATION ...45
1. Main Components and Their Configuration...................................45

a. Hardware and Software ..45
b. Routers (Border, Internal, Trigger)47
c. Target...48
d. Alerter (IDS)..48

2. Setup of Snort...48
a. Step 1 ...48
b. Step 2 ...50
c. Step 3 ...50
d. Step 4 ...53
e. Step 5 ...56
f. Step 6 ...56

3. Instrumentation..58
a. Packet Capture ..58
b. System Logs/Files..58
c. Traffic Generator ..58
d. Automation Achieved via Plug-in...58
e. Install SnortSam ...59
f. Reconfigure the /etc/snort/snort.conf File60
g. Modify the Custom Rule ...60
h. Modify the “ssp_cisco_nullroute.c” C File............................61

G. TESTING..61
1. During the Attack ..62
2. When the Attack is Recognized ..68
3. After the Attack is Recognized ...69

V. CONCLUSIONS ..75
A. RECOMMENDATIONS...75
B. FUTURE WORK...76

APPENDIX A. CONFIGURATION OF TRIGGER ROUTER AND DETAILED
EXPLANATION..79
A. CONFIGURATION...79
B. DETAILED EXPLANATION ..81

 ix

APPENDIX B. NIDS MARKET SURVEY ..83

APPENDIX C. INTERACTION WITH ACTIVE RESEARCHER OF BRO85

APPENDIX D. INTERACTION WITH REPRESENTATIVE OF SPLUNK87

APPENDIX E. CONFIGURATION OF BORDER ROUTER ..89

APPENDIX F. CONFIGURATION OF INTERNAL ROUTER.....................................93

APPENDIX G. DETAILED EXPLANATION OF THE CUSTOMIZED RULE..........97

APPENDIX H. CREATION OF ATTACK ENVIRONMENT......................................101

APPENDIX I. SSP_CISCO_NULLROUTE.C...113

LIST OF REFERENCES..119

INITIAL DISTRIBUTION LIST ...121

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. (A) DoS attack, (B) DDOS attack, (C) DRDOS (Distributed Reflection
Denial Of Service) or DDOS with Reflectors..3

Figure 2. Distributed zombie traffic aggregation. ...4
Figure 3. Advantage of the BHR/Null0 interface..5
Figure 4. Remote-triggered destination-based BHR. ..13
Figure 5. Remote-Triggered Source-Based BHR..14
Figure 6. Lab setup simulating customer-triggered BHR. ..16
Figure 7. Top-down approach for achieving automated alerting for BHR.20
Figure 8. Bottom-up approach for achieving automated alerting for BHR.....................23
Figure 9. Target machine 10.0.4.2 under attack and trigger router sending new

updates after having been informed by alerter...81
Figure 10. IP version 4 header...102
Figure 11. ICMPv4 Header ...102
Figure 12. ICMP v4 Echo Request Header. ..103
Figure 13. Snapshot of Comm View. ..104
Figure 14. Snapshot of Ethereal. ...104
Figure 15. Snapshot of Comm View. ..105
Figure 16. Snapshot of Ethereal. ...106
Figure 17. Snapshot of successful packet sent via Comm View.....................................107
Figure 18. Snapshot of initial SmartWindow..108
Figure 19. Snapshot of SmartWindow after successful connection to Smart Bit chasis.109
Figure 20. Snapshot of transmit setup via SmartWindow...110
Figure 21. Snapshot of customized packet sent through Smart Bit.................................111

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Basic configuration of iBGP session between Router 1 and Router 2 of AS
1..37

Table 2. Basic configuration of eBGP session...38
Table 3. Common functions of socket programming. ...41
Table 4. Tabular matrix to test the automation of BHR...62

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

First, I thank my advisor, Professor Geoffrey Xie, for providing me such an

interesting research topic. He showed me different ways to attack the problem and was

very generous in understanding the requirements throughout the research. He even

ensured that I received the proper knowledge about every component of the research

topic to provide better output. When required, he even went out of his way to get me a

travel grant.

Eight months is a long time, from laying the initial plans to finally achieving the

goal. In this entire journey, one person who was very instrumental in channelizing my

thoughts was my co-advisor, J. D. Fulp. He never let me deviate from my focal point.

Special thanks go to him for his solid contributions during my entire journey. He even

taught me how to bring my thoughts to paper and helped me in setting an initial platform.

Besides being indebted to both my advisors, I would like to thank Professor John

Gibson for providing me the necessary equipment to set up the real-time test bed. Also, I

would like to thank Breen Dix for his help in editing the draft of my thesis.

My special thanks also go to the Indian Air Force, who gave me the opportunity

to study in this prestigious institute. Last but not least, I would like to thank my father,

who, sitting in heaven, has been my strength throughout. I also acknowledge my mother,

my brother, and my uncle for giving me unconditional, absolute, and 101% support

toward achieving the main goal and not allowing me to worry about things at home. They

encouraged me throughout to achieve the purpose that I was here for. Without their

unconditional support, I would not have achieved this task.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The research in this thesis extends the research done by Nikolaos Stamatelatos, in

which he stress-tested three implementations of the black hole routing (BHR) concept in

a lab environment.1 In the “Future Work” section of Mr. Stamatelatos’ research, he

indicated:

As noted previously in this study, we assumed that a given DDoS attack
had been positively identified by either an automated system or a human
operator. The ability to automatically identify an attack using an IDS/IPS
system would greatly improve the performance of BGP Black Hole
Routing. As the research in this field to date is limited, it is our first
suggested area for future work.

Thus, the work of this thesis set about not only selecting and configuring an

appropriate IDS to detect a distributed denial of service (DDoS) attack; but to also

integrate this detection capability into an enhanced BHR system, by having the IDS

directly cue the “trigger router” that sends the null—black hole—route update to all

border routers. The result is a working implementation of a fully automated attack-detect-

react-protect BHR system.

Chapter I introduces the underlying concepts of denial of service (DoS), and

DDoS attacks. Since the BHR protective mechanism can be used to defend against either

of these, the collective abbreviation D/DoS will be used henceforth to indicate either the

single-source (DoS) or multiple-source (DDoS) form of attack.

Chapter II reviews the three methods of null route association (i.e., by source, by

destination, and by customer) as described by Stamatelos.2 This review not only helps the

reader to understand BHR, but is also pivotal to understanding why the by destination

method was chosen for the automated “alerter” enhancement.

Chapter III describes the Systems Engineering approach that was taken while

researching and developing the automated BHR implementation.

1 Nikolaos Stamatelatos, “A Measurement Study of BGP Black Hole Routing Performance,” Master's
Thesis, September 2006.

2 Ibid.

 2

Chapter IV details how the IDS was chosen, configured, and evaluated.

Finally, Chapter V provides a summary and suggests additional BHR-related

research.

A. DISTRIBUTED/DENIAL OF SERVICE ATTACKS

DoS attacks include any intentional, malicious means by which the legitimate

consumers of information are denied (or adversely delayed) access to needed

information. Typical methods of DoS include either the outright destruction (i.e., “hard

kill”) of the information or systems that store, transmit, or process the information; or the

overwhelming (i.e., “soft kill”) of system resources that are employed to store, transmit,

or process the information. DoS attacks, as distinguished from DDoS attacks, are

executed from a single source. DDoS attacks amplify the effect of a DoS attack by having

the underlying malicious actions executed/launched from many sources.

Figure 1 provides example illustrations of both a DoS and a DDoS attack. Also

illustrated is a slightly modified DDoS that employs “reflectors.” Unlike “slave” systems

that are non-complicit in the attack but have nonetheless been infected/compromised via

the installation/introduction of remote-controlled code, “reflector” systems are being used

“normally.” For example, a “slave” may have Trojan software installed that “listens” on

port 34,565 for specially formatted commands from the “master” system and then acts on

those commands. A “reflector,” on the other hand, will be any system that is behaving as

per normal protocols; however, the manner in which the protocols are being used serves

to adversely affect the target system. For example, the “master” may send a message to

its “slaves” to ping attack 192.168.10.35 at 1015EDT on 26 September. The “slaves”

will wait until the prescribed date and time, then spoof the target machine’s Internet

protocol (IP) address and send hundreds of Internet Control Message Protocol (ICMP)

echo requests (pings) to a list of known/suspected “reflector” systems. The “reflectors,”

in turn, echo-reply (normal behavior) to the legitimate owner of the IP address (the

target), and thus degrade/overwhelm not only the target, but possibly the network(s) the

target host is attached to as well.

 3

Figure 1. (A) DoS attack, (B) DDOS attack, (C) DRDOS (Distributed Reflection
Denial Of Service) or DDOS with Reflectors.3

B. BLACK HOLE ROUTING

Black hole routing is a clever way of saying “route this packet to the trash.” The

concept is quite simple and leverages the basic operation of routers. Routers inspect

received packets to identify the destination network (or host, if the destination network is

directly attached), then consult their routing table to see if there is either a specific next

hop for the that network or, as an alternative, a default next hop to reach that network.

This route table also called a router’s Forward Information Base (FIB), is populated both

by manual static route configuration and by the automated sharing of information via

dynamic routing protocols.

A black hole route tells the router to send the subject packet to the null0 interface

(a non-existent interface), which is equivalent to telling the router to “route this packet to

the trash.” As will be discussed in Chapter II, this “route to the trash” idea can cue off of

3 Yanet Manzano, “Tracing the Development of Denial of Service Attacks: A Corporate Analogy,”

ACM Student Magazine, www.acm.org/crossroads/xrds10-1/tracingDOS.html, last accessed 7 July 2007.

 4

a specific sender (source IP address), or a specific destination (destination IP address).

Figure 2. offers a simplistic model that suggests the immediate network relief that would

be realized if any/all of several key routers (i.e., those directly facing zombies) were told

to “black hole” any packets going to the victim IP address (i.e., destination-based BHR).

In general practice, the “key” routers will be those positioned at the border of the victim’s

autonomous system (AS).

Figure 2. Distributed zombie traffic aggregation.4

C. ADVANTAGES OF BHR

Undoubtedly, automating BHR has substantial advantages. Prior to the discussion

of automation and its advantages, it is essential to know the following characteristics of

BHR, which makes our argument to automate the BHR process stronger.

In networking, the Access Control List (ACL) is the list of rules which decides

the treatment to be given to incoming/outgoing packets. An ACL is a method by which

4 Steve Gibson, “Distributed Reflection Denial of Service,” Gibson Research Corporation,

www.grc.com/dos/drdos.htm, last accessed 7 July 2007.

 5

packets can be dropped/forwarded for the inbound/outbound traffic depending upon the

rules. An ACL is required to be configured on the device where the filtering of packets is

desired. In network security fields, routers, servers, individual hosts, etc., can have an

ACL. Although ACLs are effective, they are costlier than BHR in terms of processing.

During a D/DoS attack, when thousands of packets are flooded towards the victim

machine, processing an ACL can consume central processing unit (CPU) resources.

Unlike an ACL, the processing power required to implement null routing is minimal

because typically routing table lookup is assisted by special hardware.5

Figure 3 illustrates the advantages of null routing vis-à-vis ACL. This figure also

portrays that packets destined for the null route are directly thrown to the “bit-bucket.”;

i.e., they are discarded.

A second advantage is that a single entry can be used to control access to both

inbound and outbound packets.

Figure 3. Advantage of the BHR/Null0 interface.6

5 Nanog, The North American Network Operators' Group, www.nanog.org/mtg-0110/ppt/greene.ppt,

last accessed 8 July 2007.
6 Ibid.

 6

The third advantage is that a null route can be redistributed via routing protocols

such as BGP and, as such often only a single black hole route needs to be entered on a

router. This advantage is elaborated in detail in Appendix A.

D. PREVIOUS RESEARCH

There have been a couple of studies carried out that talk about the analysis of

BHR. The first is M. Kleffman’s thesis, “Analysis of Effects of BGP Black Hole Routing on a

Network like the NIPRNET,” and a second study carried out by N. Stamatelatos in his

thesis, “A Measurement Study of BGP Blackhole Routing Performance.”

Kleffman used simulation as the evaluation technique for his research. A

simulation software package, Opnet Modeler version 10.5, was used by Kleffman to

perform analysis. The performance metrics chosen by Kleffman was queuing delay,

latency, router convergence delay, and bandwidth utilization.

Stamatelatos, on the other hand, used a real test-bed network to evaluate the

effectiveness of various methods of BHR. The performance metric chosen by

Stamatelatos was router response time, router CPU load, and link load. The following

sub-sections briefly discuss the network setup followed for both previous researches.

1. Lab Setup/Test Bed

a. Lab Setup in Kleffman’s Research

As stated earlier in this section, the evaluation method followed by

Kleffman was simulation. Kleffman simulated 39 experiments, which were replicated

five times. His simulated network consisted of six border routers, a trigger router, and

twelve customer routers. He collected and analyzed the data under different workloads

(i.e., the amount of traffic). Kleffman’s main goal was to determine the following by

simulating experiments:

 7

• To check the effectiveness of BHR in defending the nonsecure Internet
Protocol Router Netowrk (NIPRNet) against DDOS attacks.

• To check the effectiveness of BHR without all the border routers
participating.

• To study the comparison of remote-triggered versus customer-triggered
BHR.

b. Lab Setup in Sramatelos’ Research

Stamatelatos evaluated the performance of BHR methods in the lab with

three real-time test-bed networks. He selected seven routers to simulate the various

environments that depict the real-time AS. Stamatelatos utilized his chosen performance

metrics in his test beds. A brief discussion of the three test-bed networks used by him is

as follows:

(1) Test-Bed Network #1. The main task of this test-bed

network was to evaluate the performance of both the methods of remote-triggered BHR,

i.e., destination-based and source-based. Remote-triggered BHR is reviewed in Chapter

II. Stamatelatos simulated an AS environment with three border routers, two internal

routers, and one trigger router. In this test bed, malicious traffic would approach the AS

from different sources. In addition, traffic would also traverse through different border

routers. Once the attack began, the trigger router inside the AS was configured to

advertise either source-based or destination-based BHR to evaluate both the techniques.

(2) Test-Bed Network #2. The main purpose of test-bed

network #2 was to evaluate customer-triggered BHR and then compare its performance

with remote-triggered BHR. He simulated this test bed by maintaining the same topology

as discussed in test-bed network #2. The only difference was the positioning of the

trigger router. The trigger router was placed in line with the target-host to simulate the

customer network.

(3) Test-Bed Network #3. The purpose of test-bed network #3

was to evaluate the performance of BGP BHR in a network where the routers have

sufficient CPU capacity but some of the internal links of the victim’s network become

congested during an attack. He simulated this to evaluate performance when the limiting

 8

factor could be the link load, not the router CPU load. He utilized five routers, one of

which is Juniper router with a relatively high CPU capacity, to simulate this test bed. The

topology was different from test-bed networks #1 and #2.

2. Research Conclusions

a. Kleffman’s Research Conclusions

• No adverse effects due to BHR have been noticed on the normal
operations of network like NIPRNet.

• BHR proved to be successful in defending network like NIPRNet under
D/DoS.

• BHR is more effective when all the border routers of AS are participating
in BHR.

• Remotely-triggered BHR is more effective as compared to customer-
triggered BHR.

b. Stamatelatos’ Research Conclusions

• Resource overload may disrupt the BGP session between the trigger router
and a border router and thus degrade the performance of BGP BHR.

• He seconded the opinion of Kleffman’s conclusion that customer-triggered
BHR is not as effective as other techniques.

• Destination-based BHR performed best in his test-bed simulations.

• BHR would be totally inefficient if applied 40 seconds or more after the
DDoS attack initialization (especially with high link load).

E. COMMENTS

Kleffman’s main focus was NIPRNet and his research results were based on

simulation. The major disadvantage of simulation is that these applications are highly

dependent on the computer configurations where they are installed. Stamatelatos

overcame both these flaws by utilizing real-time test-beds in his research. The common

shortcoming in both studies was the absence of IDS/IPS. Both Kleffman and

Stamatelatos assumed in their research that a D/DoS attack has previously been

recognized. Another shortcoming was the absence of automation. In both studies, they

 9

manually added the static route to the trigger router to advertise the null route. These

shortcomings have been overcome in this research by engaging the services of IDS and

automating the process of null route advertisement.

Another major shortcoming in both previous researches was in their conclusions.

Kleffman and Stamatelatos both concluded that customer-triggered BHR is least

effective.

Kleffman stated7:

Customer-triggered black hole routing is clearly not as effective as
remote-triggered black hole routing. This is due to BGP updates being sent
via TCP packets and the communication links between the bases and
border routers not being of sufficient size to handle the same amount of
traffic as the communication links between the border routers.

On the other hand, Stamatelatos stated:

Second, we concluded that, of the three basic BGP Blackhole routing
methods, the customer-triggered method has the worst performance.

Neither explored how this technique could be effective. Although the main goal

of our research was not to investigate which BHR method was best or most effective, in

Chapter IV, we have nevertheless discussed two methods by which the customer-

triggered method can be as effective as other techniques. Besides, by employing the

method we suggest in Chapter IV, Stamatelatos’ fourth conclusion, as described above, is

nullified.

7 Michael D. Kleffman, “Analysis of Effects of BGP Black Hole Routing on a Network like the

NIPRNET.” Master's Thesis, AFIT, 2005.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

II. METHODS FOR BHR

This chapter discusses three things. First, it discusses how the network is prepared

for BHR. Second, it briefly touches upon the various methods available to achieve BHR.

The final section discusses the motive for automating one of the methods.

A. INITIAL PREPARATION FOR ACHIEVING BHR

It is essential that Internet Service Providers (ISPs) or organizations (in the case

of customer-based BHR) have some initial preparation ready before one of the BHR

methods is implemented to mitigate a D/DoS attack. There are four steps that need to be

considered for this initial preparation. It is worth mentioning that these steps have no

impact on the operation of the network.

The first step is to set up a static route to the Null0 interface on all of the routers

that will be triggered to implement BHR. Included in this step is the allocation of a block

of IP address space that is not used on the Internet [RFC 1918]. For example, the IP

address 192.168.10.0/24 was used by us in our lab. The static route added in all the

routers appears as follows:

ip route 192.168.10.0 255.255.255.0 Null0

This static route indicates that any packet destined for 192.18.10.0/24 will be

black-holed into the bit bucket.

The second step is to set up one router or host as the trigger router or the ‘Black

Hole Route Server' in the network. This router will be pushing out BGP blackhole route

announcements (both addition and removal) for the victim hosts.The announcements are

triggered when specific static routes are added or removed on the trigger router. The

trigger router does not have to be a dedicated router. On a Cisco router, this equates to

redistribution edits, a route map, and some static routes with tags.8 A detailed

configuration of a trigger router and its explanation is attached as Appendix A.

8 Cisco, “Remotely Triggered Black Hole Filtering—Destination Based and Source Based,” Cisco

Press, www.cisco.com/warp/public/732/Tech/security/docs/blackhole.pdf, last accessed 9 July 2007.

 12

The third step activates the BHR. In this step, specially tagged static routes with

customized destination address (e.g. that of the victim) and specific next hop such as

“192.168.10.1” are configured on the trigger router. These routes are redistributed into

the BGP protocol and subsequently pushed into the FIBs of the BGP-speaking border

routers. Finally, the border router start to black-hole the attack packets because of the

combined effort of the new static routes and the preconfigured null routes. This step is

also covered in Appendix A.

As the final step, it is important to remove the above static routes from the trigger

router when the D/DoS attack is over.

B. METHODS FOR BHR

There are two basic methods via which BHR can be achieved. These methods are

remote-triggered BHR and customer-triggered BHR. Remote-triggered BHR is the basic

version of BHR and can further be categorized as destination-based or source-based

routing depending upon the IP address information used to block traffic. The following

three sub-sections briefly discuss these three methods of BHR.

1. Remote-Triggered Destination-Based BHR

In remote-triggered destination-based BHR, the destination IP address which is

under attack is advertised to be black-holed. The four steps discussed in the previous

section of this chapter are prerequisites to achieving this technique. The following

excerpt from a Cisco white paper nicely explains remote-triggered destination-based

BHR.9

The challenge is to find a way to quickly drop the offending traffic at the
network edge, document and track the black-holed destination addresses,
and promptly return these addresses to service once the threat disappears.
Destination-based IP black hole filtering with remote triggering allows a
network-wide destination-based black hole to be propagated by adding a
simple static route to the triggering device (trigger). The trigger sends a
routing update for the static route using iBGP to the other edge routers

9 Cisco, “Remotely Triggered Black Hole Filtering—Destination Based and Source Based,” Cisco

Press, www.cisco.com/warp/public/732/Tech/security/docs/blackhole.pdf, last accessed 9 July 2007.

 13

configured for black hole filtering. This routing update sets the next hop
IP address to another preconfigured static route pointing to the null
interface.

This process is illustrated in Figure 4.

Figure 4. Remote-triggered destination-based BHR.10

The key benefit of this technique is that packets are dropped at the edge of the

network itself and thus other traffic within the AS is not affected.

2. Remote-Triggered Source-Based BHR

As the name suggests, the source IP address(s) from where the attack is originated

are advertised by trigger router to be black-holed. The four-step initial preparation, as

discussed earlier in this chapter, is mandatory. Implementation of this method is very

similar to destination-based but it has its own pros and cons. The following excerpt from

the Cisco documentation explains source-based BHR and discusses the advantages of this

technique.

10 Cisco, “Remotely Triggered Black Hole Filtering—Destination Based and Source Based,” Cisco

Press, www.cisco.com/warp/public/732/Tech/security/docs/blackhole.pdf, last accessed 9 July 2007.

 14

Source-based BHR provides the ability to drop traffic at the network edge
based on a specific source address or range of source addresses. The idea
here is to drop the traffic at the edge based on the source address if the
source of the attack can be identified. The challenge here is to find out
whether the source is spoofed or not but on the other side the advantage is
unlike Destination-Based BHR, entire traffic destined for target host will
not be dropped. This kind of BHR technique would permit legitimate
traffic from other sources to reach the target. Implementation of source-
based black hole filtering depends on Unicast Reverse Path Forwarding
(URPF), most often loose mode URPF.Loose URPF checks the packet and
forwards it if there is a route entry for the source IP of the incoming
packet in the router FIB. If the router does not have an FIB entry for the
source IP address, or if the entry points to Null0, the Reverse Path
Forwarding (RPF) check fails, and the packet is dropped.

Figure 5 illustrates this process of remote triggered source based BHR.

Figure 5. Remote-Triggered Source-Based BHR.11

The key benefit in this technique is the same as it is with destination-based

BHR—the packets are dropped at the edge of the network. Besides, if the source is

identified to be non-spoofed, then this technique is the most effective.

11 Cisco, “Remotely Triggered Black Hole Filtering—Destination Based and Source Based,” Cisco

Press, www.cisco.com/warp/public/732/Tech/security/docs/blackhole.pdf, last accessed 9 July 2007.

 15

3. Customer-Triggered BHR

Unlike remote-triggered BHR, where the control is with the ISPs, customer-

triggered BHR is controlled by the customer of the ISP. In our scenario, the customer

would be the military network under attack. Customer-triggered BHR takes advantage of

the fact that the customer’s router speaks BGP to the border routers. If the network

administrator notices that his/her network is being overloaded by a D/DoS attack, he/she

can send an iBGP update to the border routers through his/her local router to have the

incoming traffic dropped. As with remote-triggered black hole routing, the border routers

would have to be configured to accept and apply the BGP route updates from the

customer’s router.

Customer-triggered BHR is not widely popular on the Internet because

commercial ISPs do not like to give a customer the ability to write FIB entries at the

ISP’s border routers. If a customer is compromised, there is a prominent threat to the

border routers of the ISP. Still, this kind of BHR technique can bring enormous

advantages, especially in the military networks, because it is easier to establish the trust

relationship and pre-agreement between ISPs and military networks than with other

settings. In this thesis, I have simulated an automation of customer-based BHR in which

once the destination under attack is recognized, it is black-holed until the D/DoS attack is

mitigated. Another advantage of this kind of BHR technique is that once we are sure that

the attack is from a specific source, we can black-hole the source also. All that is required

is to make the changes in the detector (IDS) and automate the BHR process accordingly.

The IDS chosen in our scenario is covered in greater detail in Chapter IV. The unique

network setup chosen to achieve customer-based BHR is shown in Figure 6.

 16

Figure 6. Lab setup simulating customer-triggered BHR.

C. AUTOMATING BHR AND ITS ADVANTAGES

Some of the proposed solutions have simulated the environment of D/DoS attacks

to clients, in which, after the attack is detected, the network administrator manually

configures a trigger router which then activates the border routers, via an iBGP update

message, to perform null routing. In a real world scenario it is very difficult to reliably

safeguard computer networks using this manual methodology, owing to the slow

response cycle.

After the automation of BHR, there should be significant improvement in the

response time. At present, after identification of the attack, the network administrator has

to manually add one or more static routes to the trigger router. This significantly delays

the response time. Other disadvantages with the manual method include the network

 17

administrator forgetting to configure the router, missing the receipt of an attack alert, or

taking too much time to gain access to the trigger router. These issues can be drastically

improved by automating the BHR process.

Automation of BHR would facilitate much faster reaction to D/DoS attacks, thus

further embellishing the protective effectiveness of the null routing idea that is at the

center of the success of the BHR strategy.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

III. SYSTEM ENGINEERING APPROACH: AUTOMATING BHR
(METHODOLOGY FOLLOWED)

System Engineering [Approach]: An Interdisciplinary collaborative
approach to derive, evolve, and verify a life-balanced system solution
which satisfies customer expectations and meets public acceptability.12

It is stated by the International Council on System Engineering (INCOSE) that

“System Engineering considers both the business and the technical needs of all

customers, with the goal of providing a quality product that meets the user needs”. Any

engineering system can have various approaches to achieve the end result. Similarly, for

achieving this thesis’ primary objective of implementing an automated alerting process,

this requirement can be addressed either by a top-down approach or bottom-up approach.

With the system engineering approach, various complexities can be managed.

A. ADDRESSABLE REQUIREMENT USING THE TOP-DOWN APPROACH

The formal definition of the top-down approach in system engineering, as defined

in Wikipedia, is as follows:

In a top-down approach an overview of the system is first formulated,
specifying but not detailing any first-level subsystems. Each subsystem is
then refined in yet greater detail, sometimes in many additional subsystem
levels, until the entire specification is reduced to base elements. A top-
down model is often specified with the assistance of “black boxes” that
make it easier to manipulate. However, black boxes may fail to elucidate
elementary mechanisms or be detailed enough to realistically validate the
model.13

12 Institution of Electrical and Electronics Engineers, “IEEE P1220, Standard for Application and

Management of the System Engineering Process,” New York, NY, 1994, p. 11.
13 Wikipedia, http://en.wikipedia.org/wiki/Top-down, last accessed 9 July 2007.

 20

Figure 7. Top-down approach for achieving automated alerting for BHR.

 21

The top-down methodology which can be adopted in this research is enumerated

below and illustrated in Figure 7:

• Set up network environment to achieve BHR.

• Set up D/DoS attack scenario to suit our goal.

• Test the manual triggering of BHR by manually entering the static route.

• Detect D/DoS using the IDS.

• Achieve IDS triggering of BHR.

B. ADDRESSABLE REQUIREMENT USING BOTTOM-UP APPROACH

Similarly, in a bottom-up approach, every element of the system is stated

explicitly in detail (e.g., which routers will be used to implement the BHR process).

These elements are then linked together to form larger subsystems, which are then

combined with other subsystems to form the final top-level system (i.e., the ultimate goal/

objective of the project). This strategy often resembles a “seed” model, whereby the

beginnings are small, but eventually grow in complexity and completeness.14 In this

project, I have used the bottom-up approach.

The next few paragraphs will expound upon the notion of the bottom-up

approach. The methodology employed when using this approach is as follows and is

further illustrated in Figure 8.

First, the hardware and software needed to simulate the identical network scenario

had to be collected. Once this minimum requirement was met, network connection tests

were carried out to ensure its correct operation. The components used and the IP address

scheme followed for the tests are discussed in detail in Chapter IV.

Second, hardware and software tools were identified to create the D/DoS attack

scenario. Once the tools were in place, the attack was tested by sending packets from the

source to the destination machine.

14 Wikipedia, http://en.wikipedia.org/wiki/Bottom-up, last accessed 9 July 2007.

 22

With the network and attack scenario created, the next task was to check the

manual triggering of the BHR and measure how quickly the trigger router could advertise

the null route.

Next, thorough research was carried out to find an appropriate alerting system to

cue the trigger router alert in case of an attack. Research was conducted to find an open

source/trial IDS that could be customized as necessary to implement the automated

alerting.

Once the alerter had been selected and configured, the next requirement was to

bring the alerter into the network setup and configure the IDS to generate D/DoS alerts,

and to ensure that the alerts were actually generated.

Finally, the alerts generated by the alerter (IDS) were used to trigger the trigger

router in order to complete the automation process.

In the bottom-up approach, further complexities could be accommodated into this

environment to suit local/organizational requirements. For example, critical alerts could

be sent via a message/e-mail to a network administrator, or other appropriate recipients,

in addition to the triggering router.

 23

Figure 8. Bottom-up approach for achieving automated alerting for BHR.

 24

C. ANTICIPATED LIFE-CYCLE OF THIS WORK

The research involved in this thesis is primarily intended to safeguard the network

(more specifically, the “Autonomous System” (AS) network) on which the target host

comes under attack. A collateral benefit of the research is that it will relieve the target

host of the D/DoS attack traffic as well, so long as the attack traffic originated from

outside of the host’s AS network. As long as D/DoS attacks exist, the BHR solution is an

option for implementation by the ISP provider/customer. The technological trend in the

network security world—as is the case in the world of traditional warfare—is that, as the

technological upper hand is temporarily achieved by the defense, the attacker devises

ever more complicated attacks. The crude, but effective, “route-to-null” defense

mechanism employed by BHR is so fundamental to how traffic is controlled that this

should always provide a high degree of network defense “triage” against what might

otherwise be crippling D/DoS traffic volume.

This thesis implements IP version 4, whereas the implementation of IP version 6

in the near future is inevitable. But due to the basic behavior of packet-switched routing,

the automated alerting of BHR would be equally effective in an IPv6 environment. So,

the life-cycle of this project is as long as D/DoS attacks exist in the network world.

 25

IV. IMPLEMENTATION AND VALIDATION

As illustrated in the bottom-up approach in the previous chapter, this chapter

describes the actual implementation of the D/DoS alerting process and the tests used to

validate the implementation. The initial sections of this chapter discuss the role of the

alerter (IDS), and the process followed by this work in selecting the optimum alerter.

Later sections of this chapter discuss the BGP protocol (BGP) and-more specifically-

which triggering process was employed to affect the appropriate BGP null-route update.

The final section of the chapter discusses the network setup, the fine-tuning of the

selected IDS, the automation of the BHR process, and, finally, the testing of the

automated process that was developed.

A. REMOTE (NIDS) VS. CUSTOMER (HIDS) ALERTING

1. What is an Intrusion Detection System (IDS)?

IDSs are systems which are used to detect malicious network traffic followed by

taking appropriate action in response. As defined by Wikipedia:

An Intrusion Detection System generally detects unwanted manipulations
to computer systems.15

These manipulations are mainly malicious activities, like unauthorized logins;

denial of service attacks, malware (which can be in the form of viruses and worms), etc.

There are various types of IDSs available on the market and each has its advantages and

disadvantages, as discussed in Section B of this chapter. An IDS that is designed to

monitor traffic for multiple hosts in the network is known as a network-based IDS

(NIDS). Similarly, an IDS that is used to detect changes or malicious activity for one

specific host is called a host-based IDS (HIDS). Generally, a NIDS is placed at remote

location and can be analogized as a remote IDS. On the other hand, an HIDS is a piece of

software which is installed on the local machine where attacks and malicious activities

are to be detected and hence can be analogized as a local IDS.

15 Wikipedia, http://en.wikipedia.org/wiki/Intrusion_detection_system, last accessed 9 July 2007.

 26

2. Reliability of NIDS vs. HIDS

A NIDS is generally deployed on the network/LAN, whereas a HIDS is deployed

on a host. Both have their own pros and cons. Network security professionals working for

large corporations or important organizations, where data protection is of utmost

importance, face a challenge: Which is the best way to detect an attack and secure all the

important hosts within the network. The answer to this question may never be the same in

any given scenario. A smaller organization, which has only one kind of client operating

system, may prefer a NIDS. On the other hand, bigger organizations, which have multiple

operating systems installed on their network, may prefer a HIDS installed on every client

or a NIDS installed in conjunction with the HIDS.

A NIDS monitors every packet that is passes through the network. This is

sometimes achieved by installing multiple sensors (receiving points) in the network. The

various advantages and disadvantages of the NIDS are as follows:

Advantages:

• Very effective when used to detect the known attacks for which a
signature is readily identifiable.

• The NIDS runs in stealth mode and makes it hard for the attacker to know
of its presence.16

• The NIDS is generally not run as an “in-line” device, but rather passively
“sniffs” a copy of all packets traversing the monitored network. Hence, a
NIDS deployment does not adversely affect normal traffic throughout.

• Multiple sensors can be deployed for one NIDS in large networks.

Disadvantages:

• In larger networks, the NIDS faces the challenge of insertion and evasion
techniques that can be used to jumble the traffic associated with one or
more or the protected hosts.17

• Some less robust NIDS products have been known to crash due to an
excessively high volume of traffic, leaving the entire network potentially
without any intrusion monitoring protection.

16 Peddisetty Naga Raju, “State-of-the-Art Intrusion Detection: Technologies, Challenges and

Evaluation,” Master’s Thesis, Linkoping, 2005.
17 Ibid.

 27

• A NIDS will be incapable of scrutinizing header and /or payload
information in encrypted packets.

• Placements of NIDS sensors (connection points) is more problematic
when working in a switched environment, as most traffic will be unicast
vice broadcast unless the switch(es) support the configuration of a port in
promiscuous mode

The HIDS monitors every packet passed to the local host and the traffic is passed

to the intended application only if there are no malicious packets. HIDS are generally

more Operating System (OS)-specific than NIDS. Various advantages and disadvantages

of the HIDS are as follows.

Advantages:

• Switch-based networks, which are an issue for NIDS, are not an issue for
HIDS.

• An up-to-date HIDS can protect the local host much more effectively than
a NIDS.

• An OS-specific attack, which may go unnoticed by a NIDS, is more likely
to be detected by a HIDS.

• Any malicious modification of the local machine can be more easily
detected by the file-integrity checkers that complement a HIDS.

• The HIDS will be able to scrutinize formerly encrypted traffic as it will
process the received packet/payload after its receiving host has decrypted
it.

Disadvantages:

• Generally, the HIDS is very difficult to manage since every host is a
sensor on its own.

• There is added administrator workload in maintaining one HIDS per host,
vice very few-possibly only one-NIDS.

• Unless the HIDS is used in conjunction with the NIDS, an attack targeting
the entire network under attack will not likely be recognized by a HIDS.

3. Scalability of Network

The scalability factor plays an influential role while selecting the IDS product and

also becomes one of the deciding factors when selecting the NIDS or the HIDS. In a

scenario where the organization is using a pure HIDS implementation, additional budget

resources should be allocated for new hosts. In the case of a pure NIDS implementation,

 28

the NIDS should be able to serve additional hosts. When the NIDS and HIDS are

working in conjunction with each other, this depends on the kind of scalability (whether

the NIDS itself will be able to serve the client or additional budget resources are required

with the HIDS).

B. WHICH IDS BE SELECTED FOR THIS RESEARCH?

HIDS for complete solution and NIDS for a LAN solution.

The above quote is attributed to Ricky Magalhaes, who authored one of the white

papers “HIDS vs. NIDS”.18 Bearing in mind that BHR is one of the countermeasures

against D/DoS and the consider various aspects discussed in this section, NIDS seems a

better choice. Further, since the BHR is not a protective solution for a single, or even

selected, host(s) in the network, but rather is a protective solution for all the hosts within

the target’s organization/network; the network-sensing NIDS appears to be the better

alerting tool than a single host-sensing HIDS. This strengthens our point to choose NIDS.

Once the decision had been made that NIDS is the more suitable for our

purposes, the next step was to identify the most favorable NIDS product to serve as the

BHR alerter. It was surprising to note that IDSs are generally often erroneously

understood as firewall type products and only 0.1 % of corporate networks are spending

the required budget resources on NIDSs.19 This strengthens our argument for careful

analysis in selecting the optimum NIDS. In our research, importance had been given to

the following general features when we selected the optimum NIDS.

• An NIDS which can be customized for organizational requirements.

• Since D/DoS attacks are very sophisticated and most have new patterns,
great importance has not been given to detecting various peculiarities or
irregularities in the network traffic (for example, what if the attack pattern
suddenly changes?). Instead, importance was given so that once the
network is under D/DoS attack and the attack is detected, we can then
automate the BHR process. Therefore, this survey was carried out to select
the NIDS which gives the capability to write our own rules to detect the
known D/DoS.

18 Ricky M. Magalhaes, “Host based vs. Network based IDS,”

www.windowsecurity.com/articles/Hids_vs_Nids_Part1.html, last accessed 20 July 2007.
19 Ibid.

 29

• An NIDS which can integrate third-party scripts with the alerting process.

• Software that is freely available.

C. IDS MARKET SURVEY (WHAT’S AVAILABLE)

Much time was spent in identifying suitable NIDSs for this research. The market

survey was primarily based on NIDS products. Factors mentioned in Section B above

were considered during the survey. It was assumed that by following these factors, if we

could successfully detect an attack and then automate the process, special NIDS software

can always be developed to meet organizational requirements. Special NIDS software

will have the following distinguishing characteristics:

• Ability to detect anomaly-based attacks.

• Ability to recognize new patterns of attacks and take suitable actions.

• Ability to automate BHR process once the alert is generated.

• Unusual events which do not require automation of BHR should still
generate alerts.

Designing special NIDS software with the attributes mentioned above (designed

for organizational requirement) is a research project of its own. While doing a market

survey for this project, I had concentrated on the following traits, along with the general

features mentioned in Section B. It makes sense that if the following listed four properties

could be achieved, then designing special IDS software with the above features would not

only be achievable but would also be very effective for organizational requirements.

• The alerter should be able to recognize the specially crafted attack for this
project.

• It should allow us to write customized rules in order to recognize the traits
mentioned in Step 1.

• It should have the ability to take automated actions against crafted attacks.

• It should perform normal actions when an attack other than the crafted
attack is recognized.

1. Market Survey

A fairly large amount of commercial (with or without single-host free trial) and

freeware NIDS products were available in the market. The idea was to select the one

which incurs minimum cost and fulfills the maximum desired features. Benefits were

 30

obtained from reviewing previous research on NIDS products [12] [13]. An additional

market survey was carried out on at least three NIDS products by either contacting the

marketing professionals (in the case of commercial product) or the developer (in the case

of freeware).

Appendix B presents the results of previously conducted research, as mentioned

above, and presents additional information that was obtained by visiting the web site of

the product. An additional market survey of a few more NIDS and the optimum NIDS

selected is discussed later in this section.

2. Signature- vs. Behavior-Based Detection

It is worth mentioning that no IDS discussion is complete until we discuss the

detection method of the IDS. The detection method of any IDS can be broadly

categorized into two categories: signature-based and behavior-based detection.

a. Signature-Based Detection

A signature-based IDS is one that detects attacks purely on the basis of

signatures, which are either created earlier or installed during setup and then updated

later. This kind of NIDS is efficacious in countering known attacks against the network.

Known attacks can be in the form of worms, viruses, or attacks created (of known

patterns) simply to cause a D/DoS. A famous example of a worm is the release of the

Code Red worm in July 2001. Code Red infected nearly 360,000 servers in 14 hours in

the second wave of attack.20 Recent examples of worms include the mass-mailing e-mail

worm “Mydoom” that appeared in 2004. Mydoom replicated up to 1000 times per minute

and overflowed the Internet with 100 million infected messages in 36 hours.21 “Melissa,”

which is an example of spreading an e-mail virus, made use of a Microsoft Word macro

embedded in an attachment. All of these highlight the importance of deploying signature-

based IDSs in general and our discussion in particular. To detect these harmful activities,

20 William Stalling, “Network Security Essential, Third Edition,” Pearson Prentice Hall, 2007, p. 340,

pp. 342-343.
21 Ibid.

 31

this kind of IDS requires a vast amount of signatures in its database. String/pattern

matching is done with the already known patterns to identify the attack.

b. Behavior-Based Detection

Behavior-based detection is also called anomaly-based detection.

According to Wikipedia: “An anomaly-based Intrusion Detection System is a system for

detecting computer intrusions and misuse by monitoring system activity and classifying it

as either normal or anomalous. The classification is based on heuristics or rules, rather

than patterns or signatures, and will detect any type of misuse that falls out with normal

system operation.”22 This kind of detection is required when organizations do not want to

accept any deviation from normal traffic. An anomaly-based IDS raises an alarm when it

monitors a deviation from some pre-defined “normal” baseline.

3. Comparison (Advantages/Disadvantages)

Advantages and disadvantages have been limited to the detection methods

discussed in the previous section.

Continuing the discussion on signature-based versus anomaly-based IDSs, let us

take the scenario that the Code Red worm has just been released. When this kind of

scenario happens, there are no existing signatures in the database which will match. This

discussed plot outline is called the “zero-day exploit” in the computer security world. The

inability to recognize a “zero-day exploit” is the biggest disadvantage for signature-based

systems. Another disadvantage of signature-based systems is that even a known attack

can be missed if its signature is missing from the database. Therefore, signature-based

IDSs demand persistent surveillance by network administrators and the regular/routine

updating of signatures.

It is very evident from our above discussion that signature-based systems are less

likely to generate false positives and negatives: there either is, or is not a match on a

known attack signature. On the contrary, anomaly-based detection systems generate a

22 Wikipedia, http://en.wikipedia.org/wiki/Anomaly-based_intrusion_detection_system, last accessed

30 July 2007.

 32

large amount of false alarms (bad) but can be very effective in the detection of zero-day

exploits (good). Anomaly-based detectors are very helpful for the network security

community in recognizing new patterns of attack.

4. Detection Method for Our Research

The basic, and most important, purpose of this project was to explore the

effectiveness of automation of BHR and the advantages achieved from its

implementation. Although the above factors play a vital role in the selection process, I

was not arduous in selecting the detection method for the selected NIDS. If the alerter

provided the capability for defining one’s own rules (for example, setting thresholds to

detect ICMP flooding attacks) and had the capability to trigger on that rule, then that

product was considered suitable for my purposes.

5. Optimum Alerter Selection

Before we conclude our discussion on which alerter we selected for our project,

the following paragraphs discuss the additional market survey I conducted.

a. Additional Market Survey

In addition to the survey conducted in Appendix B, the following NIDS

products were also surveyed:

(1) Bro. The Bro IDS was considered for this survey because

it is open-source and freely available for download. As part of the survey, I posed a few

questions to Mr. Vern Paxson, who is actively involved in the Bro research project23. His

answers indicated that it would be very complex to integrate Bro into our research.

Questions asked and replies received via e-mail are attached as Appendix C. In addition,

Bro uses a specialized policy language which would have been an additional task to

understand. Therefore, Bro was not chosen for this project.

23 Lawrence Berkeley National Laboratory, http://www.bro-ids.org/, last accessed 13 September 2007.

 33

(2) Splunk. Splunk is another product that is available in the

NIDS market. Splunk, in reality, is a search engine, which gives the flexibility to search,

access logs and configurations, write one’s own scripts, etc. Splunk is a commercial

product but a free download for testing for a single user is available online.

The biggest disadvantage of this product (which made it not

feasible for this research) is that it cannot be used as a real-time automated solution.

Questions posed to a Splunk sales engineer brought me to the conclusion that this product

couldnot be used for our research because Splunk would introduce a large delay in the

triggering mechanism. Introducing an unnecessary delay would defeat the very purpose

of automating BHR. Questions posed to the Splunk engineer are attached as Appendix D.

b. Optimum Alerter Selected

After a thorough survey of eight products available on the market, Snort ,

originally developed by Martin Roesch,24 was selected as undoubtedly the optimum

alerter due to following reasons:

• “Snort® is an open source network intrusion prevention and detection
system utilizing a rule-driven language, which combines the benefits of
signature, protocol and anomaly based inspection methods.”25

• With over 3 million downloads and 100,000+ active users, Snort has
undoubtedly become the most popular freeware IDS deployed around the
world.26

• Due to its wide popularity and deployment, Snort forums and communities
often offer immediate solutions to problems encountered during
deployment and after deployment.

• Snort can be integrated to hundreds of third-party solutions.

• Snort is highly customizable as per organizational requirement.

24 Snort.org, http://www.snort.org/training/, last accessed 13 September 2007.
25 Snort.org, http://www.snort.org, last accessed 30 July 2007.
26 Snort.org, http://www.snort.org/community, last accessed 30 July 2007.

 34

• Although Snort is highly popular due to its signature-based detection, its
available flexibility for anomaly-based inspection methods made it very
suitable for our research. Snort allows writing threshold-based rules,
which presents favorable circumstances within our project to detect the
crafted D/DoS attacks.

D. ALERT NOTIFICATION OF TRIGGER ROUTER

This section discusses in detail the protocol used to implement the BHR route

update message format, which was required once the attack was recognized; automation

techniques; and, finally, the communication channel between the alerter and the trigger

router.

It is good to understand the classic definition of Autonomous System (AS) before

steering our discussion to intra-AS and inter-AS protocols. As per RFC 1268, “the classic

definition of an Autonomous System is a set of routers under a single technical

administration, using an interior gateway protocol and common metrics to route packets

within the AS, and using an exterior gateway protocol to route packets to other AS's.

From the standpoint of exterior routing, an AS can be viewed as monolithic: networks

within an AS must maintain connectivity via intra-AS paths.”27

1. The BGP Protocol

Two routing protocols are used extensively for routing within an AS. These

protocols are Routing Information Protocol (RIP) and Open Shortest Path First (OSPF).

RIP is a distance vector protocol which is generally implemented in smaller ASs. On the

other hand, OSPF, which is a link-state protocol, is implemented in the larger ASs. With

OSPF, router broadcasts route information to all other routers within their AS. Routers

running RIP broadcasts the routing information only to neighboring within their AS.

Once routers learn all the routes within their AS, the next task is to learn what

exists outside their AS. This job is done by the Border Gateway Protocol (BGP). BGP is

the de facto standard for inter-AS routing protocols. BGP is generally referred as an

exterior gateway protocol. It performs inter-AS routing by exchanging the routing

27 RFC 1268, www.ietf.org, last accessed 1 August 2007.

 35

information between pairs of border routers serving two separate ASes. This protocol

needs to establish a TCP connection using port 179 between the two BGP peering routers

for exchanging BGP routing updates.

BGP is used to learn the reachability information from neighboring ASes. BGP

also ensures the propagation of the reachability information to the internal routers of an

AS. BGP is a complex protocol and has an enormous number of features to implement

policy-based decisions to ensure propagation of reachability.

A BGP session between two BGP peers is said to be an external BGP (eBGP)

session if the BGP peers are in different ASs. Similarly, a BGP session between two BGP

peers is said to be an internal BGP (iBGP) session if the BGP peers are in the same AS. A

TCP connection is required to be established in both cases.

2. The iBGP Protocol

iBGP works very similarly to how eBGP works. The difference lies only in how

BGP is configured on the router and network boundaries. A primary result of this

difference is that iBGP does not advertise outside the AS. Figure 9 represents pictorially

the working difference between eBGP and iBGP. Figure 10 and Figure 11 as well as

Table 1 and Table 2, portray where the difference lies while configuring the routers.

 36

Figure 9. Pictorial difference between iBGP and eBGP session.

In the above figure, a TCP session is established between BGP peer router 1 of

AS1 and BGP peer router 1 of AS2. Since the BGP session spans two ASes, this TCP

session is an eBGP session.

The session established between router 1 and router 2 as well as between router 1

and router 3 in AS1 is within the same AS and hence it is an iBGP session.

 37

Figure 10. iBGP session.

Every AS in the Internet is allotted a unique number 16-bit integer number, called

AS number, which is used for configuring routers. This number is used for exchanging

routing information and as an identifier of the AS itself. In our example, suppose the AS

number of AS 1 is 100 and 200 for AS 2. The basic configuration of iBGP and eBGP for

the example network is shown in Table 1 and Table 2, respectively.

Router 1-AS1 Router 2-AS1

interface eth xx
ip address 10.10.10.1 255.255.255.0
!

!
router bgp 100
 neighbor 10.10.10.2 remote-as 100

interface eth xx
ip address 10.10.10.2 255.255.255.0
!

!
router bgp 100
 neighbor 10.10.10.1 remote-as 100

Table 1. Basic configuration of iBGP session between Router 1 and Router 2 of AS
1.

 38

As shown, the eBGP session in Figure 11 and the eBGP configuration in Table 2,

note that both the routers belong to different ASs.

Figure 11. eBGP session.

Router 1-AS1 Router 1-AS2

interface eth xx
ip address 10.10.10.1 255.255.255.0

!
router bgp 100
neighbor 10.10.10.2 remote-as 200

interface eth xx
ip address 10.10.10.2 255.255.255.0
!
router bgp 200
neighbor 10.10.10.1 remote-as 100

Table 2. Basic configuration of eBGP session.

E. ROUTE UPDATE MESSAGE

Upon recognition of an attack, a major responsibility of the alerter was to connect

to the trigger router and issue route update commands to add static routes. The IP address

 39

that is to be black-holed was set for null routing. The trigger router then used the iBGP

route update to propagate this route to all the edge routers (iBGP peers). The iBGP peers

then set their next hop to the destination based on this update from the trigger. The route

update command for adding a black-hole route is shown in Figure 12.

Figure 12. Route update message.

A detailed explanation of this update command and trigger router configuration is

in Appendix A.

1. How to Achieve Automation/Scripting of Transmitted Alert

At this stage, we know that to achieve automation, we needed to find a way to log

into the trigger router without human (administrator) intervention. After a successful

login process, the next major requirement was to upload the route update command (as

shown in Figure 12) into the trigger router.

There are many ways that this can be accomplished and the idea is to achieve this

automation in the fastest possible way. In this section, we will discuss a few techniques

by which automation can be achieved. The automation method chosen for our research

will be discussed in depth when we discuss instrumentation in a late section of this

chapter.

A few alternative options for achieving automation for BHR are discussed below.

Every approach has its own advantages.

a. Plug-in

Wikipedia defines a plug-in as “a computer program that interacts with a

host application to provide a certain, usually very specific, function “on demand.”

Applications support plug-ins for many reasons. Some of the main reasons include:

 40

enabling third-party developers to create capabilities to extend an application, reducing

the size of an application, and separating source code from the application because of

incompatible software licenses.”28

In our environment, a plug-in was one of the best options. We only needed

the alerter to perform certain actions upon recognition of a D/DoS. A plug-in should be

able to take care of the login process followed by updating the router with the route

update command. A plug-in is also sometimes referred to as an add-in or add-on. When it

comes to performance, the plug-in is faster because these are dedicated to perform very

specific functionality.

b. Client-Server Model

This is another good option for achieving automation. Generally, a client-

server model can be achieved by implementing a socket mechanism. In this model, the

server process waits for the incoming connection and the client process is the one which

is user-driven. The server continuously listens to the requests made by clients. On receipt

of a request from a client, a new client specific data socket is created by the server and,

once the process is complete, the socket is closed.

In the Unix world, implementation of client-server processes this way is

referred as daemon processes.29 In our research, this could be implemented as follows.

When the D/DoS attacks are recognized by the alerter, it initiates the client process. On

the other end, the server process, which is continually listening for requests, opens the

new socket on receipt of a request from a client process. After creating a socket, the

server logs into the trigger router and delivers the appropriate null route update. The

advantage of this method is that the server process can run on the same machine (i.e., on

the alerter) or on a separate machine (in a network where IDSs have more than one

sensor).

28 Wikipedia, http://en.wikipedia.org/wiki/Plugin, last accessed 2 August 2007.
29 University of Wolverhampton, School of Computing and IT,

www.scit.wlv.ac.uk/~jphb/comms/sockets.html, last accessed 2 August 2007.

 41

A few of the functions which are commonly invoked to achieve the

purpose are shown in Table 3.

socket() To create a socket

bind() To associate a socket with a network address

connect() To connect a socket to a remote network address

listen() To wait for incoming connection attempts

accept() To accept incoming connection attempts

Table 3. Common functions of socket programming.30

c. Search and Destroy

This technique can also be employed to achieve our aim of automation.

Most of the IDSs maintain their alert database when the rules are fired on the basis of

signature detection, anomaly-based detection, or protocol-based detection. In this

technique, the scheme is to search the pattern for which BHR automation is supposed to

be triggered. Once the pattern is found in the database, a third-party script can be run to

log into the router and deliver the null route update command. For example, we could log

the alerts in the SQL database. Then, whenever a new alert is generated, the database is

searched and, if the matching pattern is found, a Java script program can be used to log

into the trigger router to deliver the route update command. The Java script may invoke

another third-party script. For example, the “Expect”31 software package offers scripts

which automate the remote login into other devices by mechanizing telnet, etc.

30 University of Wolverhampton, School of Computing and IT,

www.scit.wlv.ac.uk/~jphb/comms/sockets.html, last accessed 2 August 2007.
31 The Expect Home Page, http://expect.nist.gov/, last accessed 13 September 2007.

 42

The biggest disadvantage of this technique is delay. Searching might

require a long time to match the pattern, especially in a scenario where the alerter is

already overwhelmed with an enormous amount of packets during D/DoS attacks.

2. Alerter-to-Trigger-Router Channel

This section discusses the communication channel adopted to achieve the

automated triggering process. It basically depends on the network setup. Irrespective of

anything else, the alerter is always going to be in the local network. If a customer-based

BHR is planned, then the alerter and trigger router are going to be placed in the same

network. Direct Ethernet connectivity is the best option. In case, the trigger router is

placed at the ISP level; then the communication channel can be agreed upon between the

organization and the ISP. The main concern will be security. The automated login should

be secured, e.g., SSH (secure shell) should be preferred over telnet because SSH is a

network protocol which allows data transfer over a network in a secure fashion.

In our scenario, since we had implemented customer-based BHR, the alerter as

well as the trigger router are co-located and thus telnet session is less of a risk than if the

traffic was traveling outside the alerter’s network.

3. Advertisement Channel

Once the D/DoS attack against the target host is ascertained; how quickly the

attack can be halted within the autonomous boundary depends on how fast the trigger

router can advertise a black-hole route. The advertisement channel is the communication

channel used by the trigger router to advertise new route information to border routers.

 43

Figure 13. Dedicated channel used for advertisement.

During D/DoS attacks, the existing route from the border routers to the victim

machine is already overwhelmed with an enormous amount of packets. In such

circumstances, it may be difficult to propagate new routing information through the same

channel from where the D/DoS occurred. There are a couple of ways this issue can be

resolved; either by having a dedicated channel to the ISP, e.g., modem connectivity, or by

reserving some bandwidth on the existing route. Figure 13 and Figure 14 portray both of

these scenarios.

 44

Figure 14. Advertisement by reserved bandwidth (effective when the attack is
coming via the same route).

It is essential to prioritize this channel. Using a dedicated channel achieves the

BHR automation fastest because this methodology uses a channel which is not affected

by the D/DoS attack. It is worth mentioning at this juncture that adopting this method by

every customer/organization is not feasible due to the following:

• ISPs cannot provide the direct access to their routers.

• Procuring dedicated channels presents additional cost to any organization.

In our research we used a dedicated channel (Ethernet connection) to one of the

border routers to advertise the new route. This simulates the scenario in which there was

an agreement for the customer to have access to the ISP’s border router.

 45

F. TEST NETWORK CONFIGURATION

This section describes, the most critical part of the research, including the

hardware and software requirements for the test network, the topology and IP routing

scheme used, and fine tuning of the selected alerter. Most of the time was spent in

configuring the network (routers, switches, etc.), selecting and fine tuning the alerter

(Snort), and configuring and modifying a third-party Snort plug-in for automating the

BHR.

1. Main Components and Their Configuration

The list of components used (along with the software used) selected for our

topology are mentioned below. Later in the section, the configuration for each component

is also discussed.

a. Hardware and Software

The following devices were used for our test bed network:

• One Cisco router with IOS C2600 software, Version 12.1(14), with five 10
Mbps Ethernet Interfaces, used as an internal router.

• One Cisco router with IOS C2600 software, Version 12.1(13), with five 10
Mbps Ethernet Interfaces, used as an internal router.

• One Cisco router with IOS C2600 software, Version 12.0(14), with five 10
Mbps Ethernet Interfaces, used as a trigger router.

• Two Cisco routers with IOS 3600 software, Version 12.2(3) with four 10
Mbps Ethernet Interfaces and one 100 Mbps Fast Ethernet Interface.These
routers were used as Border Routers.

• Two Cisco 1900 16-port switches in the port-forwarding mode.

• Two desktop PCs with Windows XP SP 2. One was used as a target
machine and the other was used as an attack monitor. The attack monitor
was placed outside the AS boundary.

• One desktop PC with Fedora 6.0 loaded on it for the IDS.

• One Smart Bits 6000C Performance Analysis System of Spirent
Communications for continuous traffic generation.

 46

• One LAN-3321A TeraMetrics XD module with two 10/100/1000 Mbps
Ethernet Copper ports and two 1 Gigabit Ethernet Fiber ports installed on
the Smart Bits 6000C system. Both the copper ports were used to simulate
a D/DoS attack.

The applications used for our research were as follows:

• Smart Window version 7.70.128, for use with the Smart Bits 6000C
system.

• CommView version 5.5 of Tamosoft, for crafting custom packets.

• Ethereal version 0.10.7 (C) running with WinPcap (3.0 alpha3) for
capturing traffic.

• Wireshark version 0.99.3a Network Protocol Analyzer with libpcap
version 0.9.4 on Linux 2.6.18-1.2798.fc6.

Arrangement of all the constituent elements of the network as well as the

IP routing scheme followed to design the network in our scenario is depicted in Figure

15.

 47

Figure 15. Detailed network setup with IP scheme.

b. Routers (Border, Internal, Trigger)

As shown in Figure 15, five routers were utilized to form the test bed. Two

routers were configured as border routers to simulate the AS environment. Interfaces of

the border routers which are facing the internal routers are configured with the OSPF

protocol. Two internal routers were configured with only the OSPF protocol to simulate

the environment of the network within the AS. Sample configurations of the border

routers and internal routers are provided in Appendices E and F, respectively.

 48

c. Target

For the sake of simplicity, one Windows XP machine was selected as a

target machine. The IP address 10.0.4.2 was assigned to this Windows XP machine, as

shown in Figure 15. Ethereal was loaded onto this machine to capture the packets and to

note the efficacy of the D/DoS attack. Further, to see the effect of D/DoS attacks,

network utilization was also monitored, which is discussed in next section.

d. Alerter (IDS)

This was the most important and critical component of the network setup.

After selecting the optimum alerter, as discussed in Section B of this chapter, setting up

and fine tuning this crucial element of the network, took most of the allotted time.

Snort version 2.6.1 software was downloaded from the official Snort site.

Sourcefire reference manuals were very helpful in setting up the alerter as per our

environment.32 33 Snort was installed on Fedora 6.0. Snort software versions are also

available for Windows, Solaris, etc. Research revealed that Snort is most stable with a

Linux-based environment. The following are the step-by-step details followed for setting

up Snort.

2. Setup of Snort

There are various ways Snort can be installed: by downloading the RPM directly

or from the source code. The approach I followed was a mixed approach. Along with

installing Snort, a graphical interface called BASE was also installed. BASE was

installed in order to verify Snort’s capability as an “attack recognizer” and an “alert

notifier” once an attack was recognized.

a. Step 1

Before performing Snort installation, we needed to perform some basic

network settings and configure the services we needed to run. During our setup, the

32 Sourcefire, “Building and Operating Snort,” Security Training Program, 2004-2007.
33 Sourcefire, “Snort Rules,” Security Training Program, 2004-2007.

 49

firewall was turned off for simplicity. The firewall can be part of a hardening exercise

once the automation was achieved. While configuring the network, the following should

be configured without any ambiguity:

(1) IP Address. Two IP addresses were allocated to alerter.

One IP address was configured for Ethernet which sniffs the traffic for network

10.0.4.0/24. This IP address need not belong to a specific network because this interface

runs in promiscuous mode. As shown in Figure 15, the other interface is part of the

10.0.5.0/24 network. Therefore, IP address 10.0.5.2 was allocated to the other Ethernet

port, which was connected to the trigger router.

(2) Netmask. A network mask of 255.255.255.0(/24) was

used.

(3) Gateway. Although in our scenario it was not mandatory, it

is a good practice to provide a default gateway address.

(4) DNS Server. In our scenario, we did not configured a DNS

server.

(5) Services. Ports 22, 80, 443, and 3306 were enabled to

support SSH, HTTP SSL and MySQL services in the Fedora box. If the MySQL package

is not installed in Fedora, then the following packages need to be installed from the

Fedora 6.0 CD or by downloading the RPMs from the Internet. In order to achieve a

trouble-free configuration setup, the following MySQL packages should be installed:

mysql

mysql-bench

mysqlclient-devel

mysql-connector-odbc

mysql-server

 50

b. Step 2

Before installing Snort, several components were required to be pre-

installed. The following components were downloaded from the Internet as source code

and then downloaded into the /usr/local/src directory:34 35

pcre-6.3.tar.gz

libnet-1.0.2a.tar.gz

libpcap-0.9.4.tar.gz

The packages above allowed using Snort rules, tearing down TCP sessions

in response to an alert, and putting the interfaces into promiscuous mode to read network

traffic off the wire.

These packages were extracted and complied in the /usr/local directory

by giving the following commands in sequence for every package:

tar zxvf src/pcre-6.3.tar.gz

cd pcre-6.3

./configure

make

make install

The first step shown above extracted the PCRE package. The second step changed

the /usr/local to the /usr/local/pcre-6.3 directory. Steps three through five compiled the

PCRE package. A similar process was followed for LIBNET and LIBCAP packages.

c. Step 3

At this stage, we installed the Snort and configured the MySQL database

to configure the Snort alerts. This step also included; creating a few directories that

would be used by Snort.

34 SoureForge, Inc., http://sourceforge.net/, last accessed 3 September 2007.
35 tcpdump/libpcap, http://www.tcpdump.org/release/, last accessed 3 September 2007.

 51

Snort version 2.6.1 was downloaded into /usr/local/src directory. The file

name of the Snort package is snort-2.6.1.3.tar.gz. This file was extracted and compiled as

follows.

tar zxvf src/snort/snort-2.6.1.3.tar.gz

cd snort-2.6.1.3

./configure - -with –mysql

make all

make install

The series of commands listed above successfully installed Snort in the

Fedora machine. The third command indicated that Snort was compiled with MySQL.

Snort’s official website also provided the up-to-date rules, which were

downloaded into the /usr/local/src directory and copied into newly created directories of

Snort as follows.

mkdir /etc/snort

mkdir /var/log/snort

tar zxvf /usr/localsrc/snortrules-snapshot-Current.tar.gz –C /etc/snort

cp etc/*.conf* /etc/snort

cp etc/*.map /etc/snort

ln –s /usr/local/bin/bin/snort /usr/sbin/snort

The six commands above were given in the /usr/local/snort-2.6.1.3

directory. The following three commands created a Snort user and user group in Snort

directory.

groupadd snort

useradd -g snort snort

chown snort:snort /var/log/snort

 52

At this stage, a few configuration changes were required in order to get

Snort up and running. Configuration changes were made in a file called snort.conf, which

existed within the /etc/snort/snort-2.6.1.3 directory. We edited this file with the vi vi

editor by giving the following command.

vi /etc/snort/snort.conf

Once the file is opened, string “ var RULE_PATH” was searched. Make

the modification to the variable as follows:

var RULE_PATH /etc/snort/rules

After making the above modification, we searched for the following string

“database: log to variety of databases” and then added the following line at a point

directly after the commented lines.

output database: log, mysql, user=snort password=password dbname=snort

host=localhost

The line above tells Snort to log the events in the MySQL database. Snort

was also provided with the details of the database. The database name was “snort”, the

user name was also “snort”, and the password was “password”.

At this point, Snort was installed but, in order to check the working of

snort, we needed to create the database named “snort” in MySQL. To achieve this, issue

the following statements:

mysql

SET PASSWORD FOR root@localhost=PASSWORD(‘password’);

create database snort;

grant CREATE, INSERT, SELECT, DELETE, UPDATE on snort.* to

snort@localhost;

SET PASSWORD FOR snort@localhost=PASSWORD(‘password’)

exit

 53

The above statements created a database named snort, in which Snort

would log its events. The Snort package also contained the schema for various databases.

These schemas were located in the snort-2.6.1.3 directory. The following commands

activated the database schema.

/usr/local/snort-2.6.1.3/schemas

mysql –p < create_mysql snort

At this stage, the database called snort was created, which can be tested by

giving the following commands:

mysql –p

(Enter password, which is “password” as per our configuration.)

SHOW DATABASES;

Now, we could test the Snort installation by giving the following

command:

/usr/local/bin/snort -c /etc/snort/snort.conf

The Snort process created the alert file under /var/log/snort/ on its own.

We needed to change the permissions of the alert file so that the Snort user could access

that file. This was achieved by giving the following commands.

chown snort: snort /var/log/snort/alert

chmod 600 /var/log/snort/alert

d. Step 4

In this step, we installed BASE and ADODB packages. The ADODB

package provided the interface between the GUI and the MySQL database. The BASE

package provided the graphical front end to the Snort database. These packages were

downloaded from sourceforge into the /usr/local/src directory.36 These packages helped

36 SoureForge, Inc., http://sourceforge.net/ last accessed 5 September 2007.

 54

in viewing alerts in an organized fashion. These were installed to ensure the proper

functioning of Snort and its customized Snort rule.

cd /var/www/html

tar zxvf /usr/local/src/adodb490.tgz

tar zxvf /usr/local/src/base-1.2.7.tar.gz

chown apache base-1.2.7

service httpd restart

Now, since we restarted the http service, we configured the BASE by

opening the browser. We opened the browser with URL http://localhost/base-1.2.7.

It was a fairly simple process. Once the above URL was typed, the BASE

setup program started on its own. It prompted for the path to ADODB in the first step.

The path name was given as /var/www/html/adodb. The next step was to enter the

database name, database host, database user name, and database password. Enter those

details exactly as configured in Step 3 of this section. We submitted the query by

clicking “the submit query” button on the screen. We followed the on-screen instructions

in the setup script to create the database tables used by the BASE application. Clicking

the “Create BASE AG” button created tables. Now, the login screen was presented. Upon

providing the appropriate login credentials, the BASE main screen looked like the

following:

 55

Figure 16. Screen shot of successful BASE setup.

The following commands were given to enable the BASE graphing

capability. Prior to executing the following commands, we installed the php-peat-1.4.9-

4.noach.rpm and php-gp-5.1.6-3.i380.rpm packages.

pear install Image_Color

pear install Log

pear install Numbers_Roman

pear install http://pear.php.net/get/Numbers_Words-0.13.1.tgz

pear install http://pear.php.net/get/Image_Graph-0.3.0dev4.tgz

 56

e. Step 5

In this step, we wrote our own customized rule and tested the rule by

simulating a D/DoS attack. Snort allows users to write their own rules as per

organizational requirements. By default, all the Snort rules were found in /etc/snort/rules

directory. The rules folder contained a file named “local.rules” through which the user

could add customized rules. We added the following rule to this file.

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg: “ICMP Denial of

Service Test”; itype 8; classtype: misc-activity; threshold: type both, track by_dst,

count 100, seconds 10; sid: 1000001; rev: 1 ;)

The above rule was written in the /etc/snort/rules/local.rules file. The

detailed explanation of this rule is attached as Appendix G. After writing the rule into

Snort, the following command was executed for the custom rule to take effect.

service snortd restart

f. Step 6

The next step was to test the custom rule. We simulated a D/DoS attack

scenario. At this point, we will not discuss creating an attack scenario as that will be

covered in the next sub-section. Rather, we would assume that the attack against the

target host has commenced. The following screen shot of BASE shows that the custom

rule took effect immediately.

 57

Figure 17. Successful activation of custom rule.

The above screenshot indicates clearly that the “ICMP Denial Of Service

Test” custom rule fired successfully. The destination address indicates that the victim

machine was 10.0.4.2 and the source address indicates that the origin of attack was

10.0.20.1. The timestamp indicates that the threshold settings worked as desired. After

recognizing more than 100 packets of type “ICMP echo request”, the first rule fired at

15:09:37, then again at 15:09:48, again at 15:09:59, and so on. This proves that the

threshold settings of the rule worked successfully for the D/DoS attack under

consideration.

 58

3. Instrumentation

a. Packet Capture

To monitor the packets at various locations in the network, Ethereal

version 0.10.7 (C) and Wireshark version 0.99.3a Network Protocol Analyzer tools were

used. Ethereal was installed on the desktop PCs running Windows XP (the attack

monitoring machine and the target machine, as shown in Figure 15). Wireshark was

installed on the Fedora machine.

b. System Logs/Files

Log files while setting up Snort were constantly monitored to troubleshoot

the various problems faced during installation. To automate the BHR, we did not use the

log files because we did not follow the search-and-destroy technique as discussed earlier.

c. Traffic Generator

To craft the ICMP packets used for the attack, CommView version 5.5 of

Tamosoft and Ethereal version 0.10.7 (C) were used. Once the desired ICMP packets

were crafted, the Smart Bits 6000C system, with LAN-3321A TeraMetrics XD module

with two 10/100/1000 Mbps Ethernet Copper ports, was used to simulate the D/DoS

attack. The in-depth explanation of this entire process is discussed in Appendix H.

d. Automation Achieved via Plug-in

An important aspect of intrusion detection is not only registering events,

but also reacting to the attack attempts. Mitigating D/DoS by automating BHR is one of

the reactive techniques.

As discussed previously, there are various approaches to achieve

automation. Snort provides the capability to analyze data and take action based on the

results. Techniques used to take action can be writing one’s own custom script, using an

available plug-in, writing one’s own plug-in, etc. Snort has tools like Swatch to automate

the responses of Snort alerts. Swatch is a “Simple log Watcher,” which monitors log files

for specific triggers and, when any of the triggers are matched, it performs a certain

 59

action, for example, sending the route update message, sending an e-mail to system

administrators about the event, etc.37 Swatch is one approach to achieving automation.

Another approach is the plug-in, which can be one of the best investments. Due to the

evolution in the software field in the recent past, before writing an output plug-in, we

must explore all the possibilities to find the suitable plug-in to achieve our goal.

After thorough research, it was found that a Snort has been extended with

an output plug-in that notifies the SnortSam agent of blocking requests on a rule basis.

SnortSam, developed by Mr. Frank Knobe (www.snortsam.net) is an intelligent agent

that allows Snort to block connections by configuring firewalls or routers. SnortSam

requires the Snort rule to be modified. The biggest advantage of this SnortSam agent is

that it is built on the client-agent-based concept. SnortSam runs as an independent

process and does not increase the workload of Snort.

To achieve the automation of BHR, the following four steps were

followed:

e. Install SnortSam

Excellent help was available at www.snortsam.net to install and configure

the module. The SnortSam module was installed as guided by the official site.38 After

installing the SnortSam module, the snortsam.conf file, which is located under the

/usr/local/snortsam/conf directory, was configured with following options.

accept 10.0.4.3/24

accept localhost

 logfile /var/log/snortsam.log

daemon

cisconullroute 10.0.5.1 password password

37 Brian Caswell, Jay Beale, James C. Foster, “Snort 2.0 Intrusion Detection,” Syngress, 2003, p. 304.
38 SnortSam, http://www.snortsam.net/files/snortsam/docs/INSTALL, 5 September 2007.

 60

The above configuration tells the SnortSam client to accept the

connections from the local host as well as 10.0.4.3 (one of the interfaces of the alerter).

The logfile option tells it where to log files, and, finally, “cisconullroute 10.0.5.1

password “password” tells it to use the cisconullroute plug-in. 10.0.5.1 is the address of

the router where the SnortSam module will log into. The first “password” was the login

password for the telnet session and the second “password” was the password to enter the

configuration mode of the Cisco router.

f. Reconfigure the /etc/snort/snort.conf File

Once SnortSam was running and listening, we needed to configure Snort

in two places. First, we needed to add the output plug-in so that Snort could send the

block request of the destination IP address. The following command was written in the

snort.conf file.

output alert_fwsam: 127.0.0.1

That command told Snort to send the blocking request to the local

machine. The IP address 127.0.0.1 was configured because the SnortSam module was

configured on the same machine where Snort was configured.

The second place where Snort required configuration was the rule (we

wrote earlier) which was going to use the SnortSam module. This is discussed in next

step.

g. Modify the Custom Rule

Now, since the output plug-in was configured, we were required to

configure the Snort rules that should invoke a blocking of the destination IP address on

the Cisco router. We added the “fwsam:” statement in the rule. The custom rule which we

discussed in detail in Appendix G was modified as follows:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg: “ICMP Denial of

Service Test”; itype 8; classtype: misc-activity; threshold: type both, track by_dst,

count 100, seconds 10; sid: 1000001; rev: 1 ; fwsam: dst, 20 minutes;)

 61

The option “fwsam: dst, 20 minutes;” added in the rule body told Snort to

invoke a block of 20 minutes on the destination address via the SnortSam module

whenever the above rule fired.

After modifying the snort.conf files, we gave the following command to

restart Snort.

service snortd restart

h. Modify the “ssp_cisco_nullroute.c” C File

The modified file is attached as Appendix I. This code does following

three things

• It logs on the trigger router via telnet.

• It issues a command to enter the “null-route”.

• Finally, when the time interval of blocking expires, it removes the added
route.

Although, the userid and password information for the telnet session is

provided as discussed earlier and blocking information is provided in modified rule but

the special tag value used in AS to advertise the null-route needs to be configured in this

C file. Once the original code’s logic was understood, the modification was quite

straightforward by adding sprintf statement. After modifying the code, the entire

snortsam module needs to be rebuilt otherwise the modification will not take effect. The

instructions for this process are available at the snortsam site39. It is worthwhile to

mention, at present, this module supports only telnet sessions. In the future, this code can

be rewritten in the same fashion to support the SSH protocol.

G. TESTING

In our research, network components were built gradually and tested at every

stage, as shown in Figure 8. In the first stage, after configuring the routers and creating

the attack scenario in the network, manual triggering was tested. After successful manual

triggering, the optimum alerter was selected and fine-tuned to our requirements. A

39 SnortSam, http://www.snortsam.net/files/snortsam/docs/INSTALL , last accessed 13 September
2007.

 62

custom rule was made and tested on the alerter. A SnortSam module was installed on the

alerter. A SnortSam plug-in was configured and its C file was modified to achieve

automation of the BHR. To test the automation, a unique matrix was developed, which is

shown as follows in tabular form. We will represent the results of each phase as screen

shots in this section.

 Analysis
Box

(Attack
Monitoring
Machine)

Victim/
Target

Machine

IDS
(Fedora

Box)

Internal
Routers

Trigger
Router

Border
Routers

Remarks

During
Attack

Packets
captured

(Fig 18)

Flooded
with
packets
(Fig
19)

Packets
captured

(Fig 21)

Flooded Configuration
unchanged

Same
route
statistics

Attack
started
from
Smart
Bit.

When
attack is
recognized

Packets
captured

Flooded
with
packets

Attack
recognized/
Telnet
session
begins
(Fig 22)

Flooded Vty session
(telnet starts)

(Fig 22)

Same
route
statistics

After
recognition

Packets
captured

(Fig 23)

No
packets

(Fig
25)

Action
taken

(Fig 24)

No
flooding

Static route
added. New
route
advertised

New
route
updated

At this
stage
Smart
Bit still
generates
packets

Table 4. Tabular matrix to test the automation of BHR.

Table 4 shows how the test bed network performed during the D/DoS. It has three

phases: attack is underway but not yet recognized, attack is recognized by Snort, and after

the recognition of attack. Throughout the testing, the network setup as delineated in

Figure 15 remained the same. Explanation of these three phases is as follows:

1. During the Attack

A D/DoS attack was activated from the Smart Bit 6000C system. The source of

the attack was simulated from two machines with IP addresses 10.0.10.1 and 10.0.20.1.

The copper ports of the LAN card of the Smart Bit 6000C systems were configured with

 63

these source addresses. When the attack started, the packets were immediately captured

by Ethereal running on the attack monitoring machine. Figure 18 shows the captured

packets from source IP address 10.0.20.1. As depicted in Figure 15, the attack monitoring

machine was placed in network 10.0.20.0/24, therefore, packets from source 10.0.20.1

could only be captured at this machine. Hence, the screenshot displayed packets captured

from IP address 10.0.20.1 only.

Figure 18. Packets captured at attack monitoring machine (10.0.20.3).

Packets were also captured at the target machine. Figure 19 below shows the

captured packets from both sources (10.0.10.1 and 10.0.20.1). Figure 20 shows the abrupt

change in the network utilization card of the target machine, which pictorially represent

the effects of the D/DoS attack on the target/victim machine.

 64

Figure 19. Packets captured at the target machine (10.0.4.2).

 65

Figure 20. Network card utilization at target machine.

Packets captured by Wireshark in the Fedora machine, where the NIDS was

installed, are shown in Figure 21. The IDS detected the continuous flow of packets of

type “ICMP Echo Request”. Since this sensor was placed at the entry point of the LAN

(10.0.4.0/24) in promiscuous mode, both the source IP addresses were detected.

 66

Figure 21. Packets captured by the Fedora box (10.0.4.3).

During the practical demonstration, it was noticed that internal routers were

flooded with packets. The LED marked as “activity” on the front panel of the Cisco 2600

routers (shown as internal router 1 and internal router 2 in Figure 15) started to blink

rapidly. This was a positive indication that both the routers were flooded with an

enormous amount of traffic.

Route statistics were observed during the attack at the border router as well as at

the trigger router. To display the current state of the routing table, Cisco routers were

issued the “show ip route” command. The following is the sample output from this

command, showing the current routing table in the trigger router.

 67

Trigger-Router#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
 U - per-user static route, o - ODR

Gateway of last resort is not set

S 192.168.10.0/24 is directly connected, Null0
 10.0.0.0/24 is subnetted, 3 subnets
C 10.0.8.0 is directly connected, Ethernet1/3
C 10.0.5.0 is directly connected, Ethernet1/1
B 10.0.100.0 [200/0] via 10.0.8.2, 00:00:08

Similarly, the following is the sample output displayed by one of the border

routers when “show ip route” command was entered in the border router:

Border_Router_1#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
 * - candidate default, U - per-user static route, o - ODR
 P - periodic downloaded static route

Gateway of last resort is not set

S 192.168.10.0/24 is directly connected, Null0
 10.0.0.0/24 is subnetted, 8 subnets
C 10.0.10.0 is directly connected, Ethernet0/2
O E2 10.0.8.0 [110/20] via 10.0.100.2, 00:27:27, Ethernet0/0
O 10.0.2.0 [110/20] via 10.0.100.2, 00:27:27, Ethernet0/0
 [110/20] via 10.0.1.2, 00:27:27, Ethernet0/1
O 10.0.3.0 [110/20] via 10.0.1.2, 00:27:27, Ethernet0/1
C 10.0.1.0 is directly connected, Ethernet0/1
O 10.0.4.0 [110/30] via 10.0.1.2, 00:27:27, Ethernet0/1
O E2 10.0.20.0 [110/20] via 10.0.100.2, 00:27:28, Ethernet0/0
C 10.0.100.0 is directly connected, Ethernet0/0
Border_Router_1#

 68

2. When the Attack is Recognized

During the attack recognition phase, the analysis machine and the victim machine

continued to receive “ICMP echo request” packets, as shown in Figure 18 and Figure 19,

respectively. Internal routers were still overwhelmed with an enormous amount of traffic.

The configurations of the trigger and border routers remained unchanged.

The difference noticed in this phase was that once the attack was recognized by

the alerter, the alerter fires the custom rule and starts the telnet session with the trigger

router. Figure 22 pictorially represents the packets captured by Wireshark in the telnet

session between the alerter (10.0.5.2) and the trigger router (10.0.5.1).

First, a three-way handshake was performed for the telnet session. Then, the

alerter passes the authentication information in order to update the route information for

the trigger router. The telnet session continued until the new route update message was

passed.

 69

Figure 22. Telnet session between alerter and trigger router.

3. After the Attack is Recognized

This phase described the changes in the network environment once the telnet

session between the alerter and the trigger router was complete. This phase also illustrates

the fruitful results of the automation process.

Ethereal, running on the attack monitoring box, which was connected outside the

AS boundary, continued to capture packets, as shown in Figure 23. This clearly indicates

that the Smart Bit System was continuously sending the “ICMP echo request” packets,

which ensures that the D/DoS attack was still active.

 70

Figure 23. Packets captured at the attack monitoring box.

At the end of the telnet session, a new route update message, as discussed in

Section C and shown in Figure 12, was passed by the alerter to the trigger router as telnet

data. Figure 24 portrays the route update message, similar to Figure 12, passed during the

telnet session.

 71

Figure 24. Route update message passed by the alerter to the trigger router.

Once the route update message is passed, the configuration of the trigger router

got updated. The following was the sample output of the “show ip route” command,

showing the updated routing table in the trigger router:

Trigger-Router#show ip route

10w3d: %SYS-5-CONFIG_I: Configured from console by vty0 (10.0.5.2)
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
U - per-user static route, o - ODR

Gateway of last resort is not set

 72

S 192.168.10.0/24 is directly connected, Null0
10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
C 10.0.8.0/24 is directly connected, Ethernet1/3
S 10.0.4.2/32 is directly connected, Null0
C 10.0.5.0/24 is directly connected, Ethernet1/1
B 10.0.100.0/24 [200/0] via 10.0.100.1, 00:00:55
Trigger-Router#

There are two noticeable things in the above sample output. First, it states that it

was configured from console by vty0 (10.0.5.2), which means the configuration of the

trigger router got updated by telnet session from IP address 10.0.5.2. IP address 10.0.5.2

is the address of the alerter. Second, it shows “S 10.0.4.2/32 is directly connected,

Null0”, which means there is a static route of IP address 10.0.4.2 to Null0 interface.

On getting this new static route information, the trigger router started the iBGP

session with the border router and advertised the new route information. A sample output

from the “show ip route” command, showing the current routing table in the border router

is as follows:

Border_Router_1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
 * - candidate default, U - per-user static route, o - ODR
 P - periodic downloaded static route

Gateway of last resort is not set

S 192.168.10.0/24 is directly connected, Null0
 10.0.0.0/8 is variably subnetted, 9 subnets, 2 masks
C 10.0.10.0/24 is directly connected, Ethernet0/2
O E2 10.0.8.0/24 [110/20] via 10.0.100.2, 00:02:57, Ethernet0/0
O 10.0.2.0/24 [110/20] via 10.0.100.2, 00:02:57, Ethernet0/0
 [110/20] via 10.0.1.2, 00:02:57, Ethernet0/1
O 10.0.3.0/24 [110/20] via 10.0.1.2, 00:02:57, Ethernet0/1
C 10.0.1.0/24 is directly connected, Ethernet0/1
B 10.0.4.2/32 [200/0] via 192.168.10.2, 00:02:33
O 10.0.4.0/24 [110/30] via 10.0.1.2, 00:02:59, Ethernet0/1
O E2 10.0.20.0/24 [110/20] via 10.0.100.2, 00:02:59, Ethernet0/0
C 10.0.100.0/24 is directly connected, Ethernet0/0
Border_Router_1#

 73

It was very evident in the sample output of the border router that a new static

route to 10.0.4.2. was added via BGP protocol. Now, since the border routers were

advertised with this latest route information, any D/DoS attempt against the victim

machine (10.0.4.2) would be mitigated. Also, during a practical demonstration, it was

noticed that activity at the internal routers returned to normal. Figure 25 indicates that

Ethereal running on the victim machine stopped capturing “ICMP echo request” packets,

which means that the D/DoS attack against the target machine was mitigated and the

automated BHR process was successful.

Figure 25. D/DoS attack against the target (10.0.4.2) was mitigated.

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

V. CONCLUSIONS

Chapter IV demonstrated the real-time execution of the BHR automation process.

It was noted that once an attack was detected the system close to 20 seconds to mitigate

the D/DoS attack. This time includes the telnet/SSH session initiated from the IDS to the

trigger router, advertisement of the null route to all the border routers, and dropping all

the malicious packets at the AS boundary. In addition, the test-bed setup was monitored

constantly for a period of four months and several live demonstrations were given to

important visitors from the National Security Agency and other organizations. The test-

bed setup was always found to be robust. No events like the IDS crashing due to

application failure or excessive D/DoS traffic were noticed. The IDS never required any

restarts. This leads us to the conclusion that the automation of BHR is not only an

adaptable and useful technique, but it is also an efficacious and productive technique to

mitigate the D/DoS attacks.

A. RECOMMENDATIONS

Though BHR cannot be the sole solution to mitigate a D/DoS attack, it is

recommended that the BHR solution should be one of the mechanisms available to

safeguard the target(s) and network resources from annoying D/DoS traffic within an AS.

To achieve this, organizations should implement an IDS-as-BHR-alerter solution that can

be customized as per local policy.

BHR proves to be one of the fastest ways to mitigate D/DoS attacks on the

network. As mentioned in the conclusion, it took close to 20 seconds to mitigate a D/DoS

attack. Therefore, it is recommended that if customer-triggered BHR is to be

implemented as an enterprise-level security solution, then a continuous SSH session

should be maintained between the customer’s IDS and the trigger router. This will

significantly decrease the time needed to mitigate the D/DoS attacks (i.e., there will not

be any time wasted establishing the SSH session).

 76

It is also recommended that progressive steps should be initiated to have pre-

agreements with ISPs in order to effectively defend networks via customer-triggered

BHR.

B. FUTURE WORK

While this research proves that automating BHR brings substantial advantages,

there are additional opportunities to produce better results. As said by Buddha in one of

his inspirational quotes.40

All that we are is the result of what we have thought.

We also believe that the thought process should never end. Continuing on this

note, we recommend that the following future studies would be very beneficial for the

network security field in general and mitigation of D/DoS attacks in particular.

As discussed in Chapter IV, reserving some bandwidth in the “in-band” route path

could be very productive for a customer/alerter to advertise the null route, rather than

necessitating a dedicated link between customer/alerter and trigger router. Evaluating the

performance of customer-triggered BHR by adopting this technique could yield some

interesting results.

In this research, we used the open-source IDS Snort, which is not specially

designed to mitigate D/DoS attacks. One area of future research would be develop a set

of Snort rules that are specific to D/DoS attacks and sufficiently general to detect most of

the known types of D/DoS attack, and, and additionally, new forms of attacks.

It may also be worthwhile to develop a smarter IDS that can be customized to

trigger the source-based as well as the destination-based BHR as per policy. The

following are a few examples of the characteristics which a smarter IDS might have:

40 About, Inc., http://quotations.about.com/od/inspirationquotes/tp/10_inspiration.htm,last accessed 5

September 2007.

 77

• If it is certain that the source IP address(es) from where the D/DoS attack
originated is/are not spoofed, there should be no hesitation to block
this/these source IP address(es).

• On the other hand, if it is certain that the D/DoS attack is against a host or
server that is not offering any services outside the AS, then blocking the
destination IP address is a better option.

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

APPENDIX A. CONFIGURATION OF TRIGGER ROUTER AND
DETAILED EXPLANATION

A. CONFIGURATION

!

version 12.0

service timestamps debug uptime

service timestamps log uptime

no service password-encryption

!

hostname Trigger-Router

!

!

ip subnet-zero

!

!

!

interface Null0

 no ip unreachables

!

interface Ethernet0/0

 ip address 20.0.0.1 255.255.255.0

 no ip directed-broadcast

!

interface Ethernet1/0

 no ip address

 no ip directed-broadcast

 shutdown

!

interface Ethernet1/1

 ip address 10.0.5.1 255.255.255.0

 no ip directed-broadcast

!

interface Ethernet1/2

 no ip address

 no ip directed-broadcast

 80

 shutdown

!

interface Ethernet1/3

 ip address 10.0.8.1 255.255.255.0

 no ip directed-broadcast

!

router bgp 209

 no synchronization

 network 10.0.8.0 mask 255.255.255.0

 redistribute static route-map StaticToBGP

 neighbor 10.0.8.2 remote-as 209

 neighbor 10.0.100.1 remote-as 209

 no auto-summary

!

ip classless

ip route 192.168.10.0 255.255.255.0 Null0

!

route-map Static permit 10

!

route-map StaticToBGP permit 10

 match tag 20

 set ip next-hop 192.168.10.2

 set local-preference 200

 set origin igp

 set community no-export

!

!

line con 0

 password password

 login

 transport input none

line aux 0

 password password

 login

line vty 0 4

 password password

 login

 81

!

no scheduler allocate

end

B. DETAILED EXPLANATION

The above configuration can be explained with following figure.

Figure 9. Target machine 10.0.4.2 under attack and trigger router sending new
updates after having been informed by alerter.

In our scenario, the trigger router uses the next hop method and sets the next hop

route for the destination IP address that is to be black-holed and then uses iBGP route

update to propagate this route to all the edge routers (iBGP peers). The iBGP peers then

set their next hop to the destination based on this update from the trigger. On every edge

router, there is a static route for this next hop set to null0.41 Upon receiving a route

update for the destination IP, both the border routers in our scenario set their next hops

accordingly. The static route for the next hop effectively forwards all traffic for the black-

holed destination IP address to null0. The trigger router has forwarded the next hop IP

41 Cisco, “Remotely Triggered Black Hole Filtering—Destination Based And Source Based,” Cisco
Press, www.cisco.com/warp/public/732/Tech/security/docs/blackhole.pdf, last accessed 9 July 2007.

 82

address as 192.168.10.2. Now, since the border routers have already been configured at

the ISP with 192.168.10.0/24 set to Null 0, therefore, all the traffic destined towards the

target machine will now be dropped at the border routers. The following sequence of

events will occur when the target is under attack.

1. An attack is targeted at 10.0.4.2.

2. A static route to the target IP address, 10.0.4.21, is added to the triggering
router with the tag 20.

3. A route map in the trigger matches the tag 20 and sets the next hop to
192.168.10.2, origin to IGP, and community to no-export. Community no-
export tells that this route should not be forwarded outside the autonomous
system boundary.

4. The trigger sends the route as an iBGP route update to both the border
routers.

5. The border routers that are peers receive the update and accordingly set
the next hop to the target, 10.0.4.2, as 192.168.10.2.

6. Since the border routers have static routes of 192.168.10.0/24 set to null0,
the final FIB entry for the target IP address (10.0.4.2) is set to null0.

7. All future traffic to 10.0.4.2 will be forwarded to null0 and dropped.

 83

APPENDIX B. NIDS MARKET SURVEY

Characteristics

Cisco
IDS

NFR
Sentivist

Intrusion
Secure
Net

Net
screen-
IDP

Snort Remarks

Network Based
or Host Based

Network-
Based

Network-
Based

Network-
Based

Network-
Based

Network-
Based

Freeware No

Over
$1000

No No No Yes Price of Cisco
IDS.42

Anomaly
Detection

Yes Yes Yes Yes No, but
anomaly
rules can
be
written.

Snort is
signature based
but simple
anomaly rules
can be written

Third Party
Tool
Integration

Yes Yes Yes No Yes

Customizable Yes Yes Yes Yes Yes
ICMP Attack Yes Not

Known
Yes Yes Yes This feature is

compared
because in my
project I have
created an
ICMP attack

Script
Execution

Yes No No No Yes

New Attack
Patterns

Not
Known

Not
Known

Not
Known

Not
Known

No This is not the
feature which
is desired by
this project but
this is the
feature which
is desired for
D/DoS attack
recognition.

42 Ricky M. Magalhaes, “Host based vs. Network based IDS,”

http://www.windowsecurity.com/articles/Hids_vs_Nids_Part1.html,last accessed 20 July 2007.

 84

THIS PAGE INTENTIONALLY LEFT BLANK

 85

APPENDIX C. INTERACTION WITH ACTIVE RESEARCHER OF
BRO

Question 1: Is Bro capable of detecting most of the DoS/DDoS attacks?

Reply by Bro researcher: It has a module for detecting SYN flooding, and another that

performs general analysis of large bursts of traffic (but which hasn't been integrated into

the rest of the system in terms of producing events upon detection).

Question 2: If not, can it be tuned to do so?

Reply: Well, its analysis is all scriptable, so you can make it do a wide range of detection.

But if by “tuned” you mean there's a couple of settings that you adjust and that's it, then

no, it requires scripting.

Question 3: If yes, is there any good source to learn the Bro language (e.g., a book,

such as Bro for Beginners or Learning Bro).

Reply: Just the documentation that comes with it and is available from the wiki.

Question 4: Is Bro compatible with other scripts written in Python, Java, or Perl?

Reply: It can call arbitrary programs but doesn't link directly into other interpreters.

Question 5: Can Bro talk to Cisco routers? If yes, can Bro also talk to Juniper

routers?

Reply: It does so, again, via calling arbitrary programs. The one we use for dynamic

blocking, then ‘SSH-es’ into the LBL border router.

 86

THIS PAGE INTENTIONALLY LEFT BLANK

 87

APPENDIX D. INTERACTION WITH REPRESENTATIVE OF
SPLUNK

Question 1: In our scenario and environment we want to integrate your product

for detecting a known DDoS attack and, after detection of a particular attack,

whether Splunk can handle the following: Is your product capable of talking to a

Cisco router when desired to modify the running configuration of Cisco (available

via plug-in or something along these lines). I can put forth further questions once I

am clear that this functionality is performed by Splunk.

Reply by Splunk Representative, Mr. Michael Wilde, Sales Engineering Manager: Puri,

provided you are testing Splunk 2.2 (although 3.0 is in beta now), there's a feature called

“LiveSplunk” (in 3.0, it’s just called “a scheduled save search and alert”). You can run a

script when results from a scheduled search have passed a threshold, for example,

“number of events rises by N” triggers a script that ‘SSH-es’ into the Cisco router and

makes a configuration change. While Splunk doesn't have a plug-in to modify the Cisco

configuration, there's no reason why it can't trigger another mechanism.

 Question 2: I think, Michael, you understood the requirement. We can run the

script and it will be supported by Splunk. Now, the queries related to the earlier

question are:

(A) Does Splunk have an auto feature which triggers the script (like snort)

or do we need to have a separate module tied up with the alarms of

Splunk?

(B) Is the daemon that listens to certain events provided by Splunk or do

we need to write that daemon?

(C) What kind of scripts does Spunk support…and are Python and C part

of them or not?

 88

Reply: Puri, the answers to all of your questions are, primarily Splunk supports scripts

that execute on the local operating system and are wired up for action by automated

searches in the alerting (or LiveSplunk) mechanism at a minimum of one-minute

intervals.

Note: The one-minute interval was the deciding factor in not using Splunk in our

research.

 89

APPENDIX E. CONFIGURATION OF BORDER ROUTER

!

version 12.2

service timestamps debug uptime

service timestamps log uptime

no service password-encryption

!

hostname Border_Router_1

!

!

ip subnet-zero

!

!

call rsvp-sync

!

!

!

interface Null0

 no ip unreachables

!

interface Ethernet0/0

 ip address 10.0.100.1 255.255.255.0

 half-duplex

 90

!

interface Ethernet0/1

 ip address 10.0.1.1 255.255.255.0

 half-duplex

!

interface Ethernet0/2

 ip address 10.0.10.2 255.255.255.0

 half-duplex

!

interface Ethernet0/3

 no ip address

 shutdown

 half-duplex

!

interface FastEthernet1/0

 no ip address

 shutdown

 duplex auto

 speed auto

!

router ospf 109

 log-adjacency-changes

 redistribute connected subnets

 redistribute static subnets

 91

 redistribute bgp 209 subnets

 network 10.0.1.0 0.0.0.255 area 0

 network 10.0.100.0 0.0.0.255 area 0

!

router bgp 209

 no synchronization

 bgp log-neighbor-changes

 network 10.0.100.0 mask 255.255.255.0

 neighbor 10.0.8.1 remote-as 209

 neighbor 10.0.100.2 remote-as 209

 no auto-summary

!

ip classless

ip route 192.168.10.0 255.255.255.0 Null0

ip http server

!

!

!

dial-peer cor custom

!

!

!

!

gatekeeper

 92

 shutdown

!

!

line con 0

 password password

 login

line aux 0

 password password

 login

line vty 0 4

 password password

 login

!

end

 93

APPENDIX F. CONFIGURATION OF INTERNAL ROUTER

!

version 12.1

no service single-slot-reload-enable

service timestamps debug uptime

service timestamps log uptime

no service password-encryption

!

hostname Internal_Router_1

!

!

ip subnet-zero

!

!

interface Ethernet0/0

ip address 10.0.3.1 255.255.255.0

!

interface Ethernet1/0

ip address 10.0.1.2 255.255.255.0

!

interface Ethernet1/1

ip address 10.0.2.2 255.255.255.0

!

 94

interface Ethernet1/2

no ip address

shutdown

!

interface Ethernet1/3

no ip address

shutdown

!

router ospf 109

log-adjacency-changes

network 10.0.1.0 0.0.0.255 area 0

network 10.0.2.0 0.0.0.255 area 0

network 10.0.3.0 0.0.0.255 area 0

!

ip classless

no ip http server

!

!

line con 0

password password

login

line aux 0

password password

 95

login

line vty 0 4

password password

login

!

end

 96

THIS PAGE INTENTIONALLY LEFT BLANK

 97

APPENDIX G. DETAILED EXPLANATION OF THE
CUSTOMIZED RULE

The customized rule that was written to detect “ICMP flooding” D/DoS attacks is

detailed in the following steps. This rule is written in /etc/snort/rules/local.rules.

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg: “ICMP Denial of

Service Test”; itype 8; classtype: misc-activity; threshold: type both, track by_dst,

count 100, seconds 10; sid: 1000001; rev: 1 ;)

The rule is a specified set of keywords and arguments used as matching criteria

to identify security policy violations, known network attacks, etc.43 Depending on the

action specified in the rule, it may alert, log, ignore the packet, trigger an alert, and

perform customized actions. The rule contains two logical sections: the rule header and

the rule body. The rule header contains the rule’s action, protocol, source IP address, etc.

The rule body contains the keywords and arguments. In our customized rule, the rule

header contains following information:

alert icmp $EXTERNAL_NET any -> $HOME_NET any

(a) In our case, the rule’s action is to alert. Alert means to log the event and

send an alert message to the output component.

(b) Each rule requires that we must specify the protocol. In our case, we have

specified ICMP (Internet Control Message Protocol).

(c) $EXTERNAL_NET means any traffic coming from any host that is not on

our internal network.

(d) “any” means any traffic coming from any port on the originating host.

(e) is the operator.

(f) $HOME_NET means any traffic meant for a host belonging to our internal

network.

(g) “any” means any traffic destined for any port to destination.

43 Sourcefire. “Building and Operating Snort.” Security training program, 2004-2007, Sourcefire.

 98

Snort does not actually require that there be a rule body because all the basic

information is already contained in the rule header.44 However, the rule body is the

portion which has real power. The rule body allows Snort to drill into a packet. The entire

rule body is enclosed in parentheses. Every rule option ends with a semicolon (even the

last option). In our customized rule, the rule body contains the following information:

(msg: “ICMP Denial of Service Test”; itype 8; classtype: misc-activity; threshold:

type both, track by_dst, count 100, seconds 10; sid: 1000001; rev: 1 ;)

(a) “msg” allows us to give the appropriate name to customized rule. The alert

will include the message “ICMP Denial of Service Test.”

(b) “itype 8’ tells Snort to look for ICMP packets of the echo request type.

(c) The “classtype” is miscellaneous.

(d) We have tuned the Snort for a threshold. This option contains following

information

 “threshold: type both, track by dst, count 100, seconds 10”

(i) “type both” means to alert every M times we see this event

during the time interval, then ignore events for the rest of

the time interval.

(ii) “track by_dst” tells Snort to track the event occurring as per

destination address.

(iii) “count 100” and “seconds 10” means that this rule will look

for a minimum of 100 ICMP echo request packets within

10 seconds before generating an alert and then ignore the

rest of the packets. For example, if there are 20,000 packets

of this kind within the mentioned time duration, Snort will

generate the alert on the 100th packet and will ignore the

rest of the packets. Snort will start to look for this pattern

again after the mentioned duration of 10 seconds expires.

44 Sourcefire. “Building and Operating Snort.” Security training program, 2004-2007, Sourcefire.

 99

(e) The “sid” option is used to set the Snort ID to appear with the alert when

the rule triggers. For custom rules, we must use a number greater than

1,000,000 to distinguish them from the rules released by Snort. In our

case, since this is the only custom rule we have in Snort, a sid value of

1000001 is used.

(f) The “rev” option helps to manage rules. This option allows us to assign a

revision number once a rule is edited. In our case, revision number 1 was

used.

 100

THIS PAGE INTENTIONALLY LEFT BLANK

 101

APPENDIX H. CREATION OF ATTACK ENVIRONMENT

A ping attack occurs when an attacker attempts to overwhelm the victim’s

equipment through the use of ICMP echo request packets. Like most D/DoS attacks, ping

attacks attempt to use CPU cycles and memory to prevent legitimate use of equipment.

The purpose of this research is to prove that the target host is partially saved from

D/DoS attack once the attack pattern is recognized. The saving is “partial”; as the BHR

solution takes the rather drastic action of dropping all traffic from sources outside of the

target host’s autonomous systems (AS); thereby alleviating the target host of the

excessive traffic, but also rendering it incommunicado with any legitimate traffic source.

Further, BHR will be ineffectual against any D/DoS traffic originating from within target

host’s AS. ICMP echo request packets were crafted to simulate the ping attack scenario.

To craft the genuine looking ICMP echo request packet of IP ver. 4.0 we need to have a

good understanding of the following:

(a) Various fields of IP ver. 4 Header.

(b) Various fields of ICMP ver. 4 Header

(c) Various fields of ICMP ver. 4 echo request Header.

The following three figures portray the information contained in the IP and ICMP

headers.

 102

1 2 3 4
000 001 00

2
00
3

00
4

00
5

00
6

00
7

00
8

00
9 10 111 112 113 114 115 11

6
11
7

11
8

11
9

22
0

22
1

22
2

22
3 224 225 226 227 228 229 330 331

Version IHL Type of Service Total Length

Identification
FFla

gs
Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

Figure 10. IP version 4 header45

1 2 3 4

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

Type Code Header Checksum Header Checksum

Figure 11. ICMPv4 Header46

45 IETF Secretariat, http://www.ietf.org/rfc/rfc791.txt, last accessed 10 September 2007.
46 Internet FAQ Archives, http://www.faqs.org/rfcs/rfc792.html,last accessed 10 September 2007.

 103

1 2 3 4

00

0

00

1

00

2

00

3

00

4

00

5

00

6

00

7

00

8

00

9

11

0

11

1

11

2

11

3

11

4

11

5

11

6

11

7

11

8

11

9

22

0

22

1

22

2

22

3

22

4

22

5

22

6

22

7

22

8

22

9

33

0

33

1

Identifier Sequence Number

Data

Figure 12. ICMP v4 Echo Request Header47.

Creating the packet not only requires a network packet generator tool but also a

packet capture utility, like Wireshark or Ethereal, to verify the correct checksum. Then,

the hex codes of successfully crafted packets were fed into Spirent Communication’s

Smart Bit Generator. The step-by-step methodology followed to craft packets is as

follows:

1. Downloaded the following tools:

(a) Ethereal (or Wireshark) to check the correct checksum.

(b) CommView Ver 5.5 (Evaluate Version)

2. The tool CommView Version 5.5, (evaluation version) of tamosoft was

used to craft ICMP packets. The combination of this tool and the packet monitoring tool,

Ethereal, helped me to create genuine-looking ICMP packets in the lab. The first step was

to enter the destination and source MAC address (remember, the destination MAC

address is the next hop address). The following figure shows that the moment we entered

the new source and destination, the IP address tool showed the checksum as incorrect.

47 Internet FAQ Archives, http://www.faqs.org/rfcs/rfc792.html,last accessed 10 September 2007.

 104

Figure 13. Snapshot of Comm View.

3. Still, we let the packet go with the wrong checksum and monitored the

packet contents through Ethereal to check for the correct checksum. The following figure

shows that Ethereal captured the packet and, not only displayed the incorrect checksum,

but also suggested what the correct checksum should be. This correct checksum was then

fed into NetComm to retransmit the packet.

Figure 14. Snapshot of Ethereal.

 105

4. After feeding the correct header checksum, a packet was loaded with some

data. This time NetComm showed the ICMP checksum to be incorrect. The same

technique discussed in Steps 2 and 3 were followed to find the correct checksum. The

following figures portray the detection of incorrect ICMP.

Figure 15. Snapshot of Comm View.

5. Ethereal detected the incorrect ICMP checksum and then suggested the

correct one.

 106

Figure 16. Snapshot of Ethereal.

6. Finally, we had a genuine-looking packet. Once we sent this crafted

packet, as shown as follows, we could monitor via Ethereal that there were no more

errors and the destination address replied to ping requests.

 107

Figure 17. Snapshot of successful packet sent via Comm View.

7. CommView had another feature by which we could set the transmission

rate of crafted packets. To create the D/DoS scenario, we could have three machines

simply running this tool and generating the packets at a rate of 2000 packets per second.

8. Since we had the Smart Bit Chassis (manufactured by Spirent

Communication) available in the lab, we utilized that equipment. The following few

paragraphs describe how we configured the equipment.

This equipment is very effective. Various network-related measurements
were carried out.

The hex code of the crafted packet was fed into Spirent Communication’s
Smart Bit Generator to activate the attack. We fed different source MAC
addresses although changing the MAC address would not change the IP
header checksum. Still, the ICMP checksum would vary because the
Smart Bit generator had a limit on the length of contents we could feed.
Applying the same technique, we sent the packet from the Smart Bit
generator with a bad ICMP checksum and found the correct one through
Ethereal.

9. The following few paragraphs provide step-by-step instructions on how to

set a customized packet in Smart Bit generator.

 108

(a) The Smart Bit chassis should be connected to the PC from where we are

about to configure. Install the Smart Bit application software onto the PC.

(b) After the installation of Smart Bit applications, launch SmartWindow by

selecting Select Start > Programs > SmartBits SystemsApplications >

SmartWindow. We shall see the following window.

Figure 18. Snapshot of initial SmartWindow.

(c) When we select SMB-6000 followed by connect, SmartWindow will try to

connect to the chassis but may not connect because we have yet to assign

the IP address to our PC (ensure the physical connectivity). Also, we may

not be able to view the cards connected to the Smart Bit generator. For

that, we need to assign the PC an IP address belonging to the same

network as the Smart Bit chassis. The default address of the Smart Bit

chassis is 192.168.0.100 (/24). Therefore, we can give any address

belonging to this network range. After assigning the IP address, we shall

be able to ping the 192.168.0.100. Now, again click on SMB 6000, then

select connect, followed by the trivial details asked by the application.

 109

Then, you should be able to see the sample figure showing the LAN

3321A card connected to the Smart Bit generator.

Figure 19. Snapshot of SmartWindow after successful connection to Smart Bit chasis.

(d) Every LAN card consists of two ports. We can go to any port and right-

click, then select the Transmit setup since we are going to set up the

transmission of packets from these cards. Enable the smart metric mode as

well as copper media because we are going to send the packets through the

Ethernet ports.

 110

Figure 20. Snapshot of transmit setup via SmartWindow.

(e) From the above figure, select the edit button and enter the custom editor,

where we can feed the customized packet. A successfully delivered crafted

packet through Smart Bit is shown in the next figure. Testing of this

packet was already done by Comm View and Ethereal. This packet was

used from port 01 of a LAN card. The other port can be used to transmit

the same kind of packet by doing little bit of modification.

 111

Figure 21. Snapshot of customized packet sent through Smart Bit.

10. Since, in our scenario, the attack is from two places to simulate the D/DoS

attack, we have used both the ports of the LAN 3321A card.

11. During this process, we discovered an IOS vulnerability—due to which,

we had to create more genuine-looking packets. The Smart Bit generator had the built-in

capability to generate the ICMP packet but, when those packets were sent as attack

packets, the Cisco device receiving these specifically crafted IPv4 packets will force the

inbound interface to stop processing traffic. The device may stop processing packets

destined to the router, including routing protocol packets and ARP packets. No alarms

will be triggered, nor will the router reload to correct itself. This issue can affect all Cisco

devices running Cisco IOS software. This vulnerability was noticed when packets left the

source machine successfully but did not reach the destination. While investigating, it was

found via the show interface ethernet 0/0 command in Cisco router, that the input

queue size was more than the output queue. Additional investigation led us to believe that

all the packets were dropped by the Cisco interface. This was verified by giving the

 112

command show buffers input-interface serial 0/0 packet, which indicated millions of

packets dropped. Further research showed that this vulnerability is present in all devices

running Cisco IOS released before July 2003.

 113

APPENDIX I. SSP_CISCO_NULLROUTE.C

The following is the modified source code for the Cisco null route plug-in. We

must take this opportunity to thank Mr. Frank Knobbe for developing a great plug-in. His

thorough research saved us precious time in not having to reinvent the wheel.
/* $Id: ssp_cisco_nullroute.c,v 2.2 2005/07/10 21:08:34 fknobbe Exp $
 *
 *
 * Copyright (c) 2005 Frank Knobbe <frank@knobbe.us>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
* Acknowledgements:
 *
 * Brent Erickson and Sergio Salazar for the idea and sample commands.
 *
 *
 * ssp_cisco_nullroute.c
 *
 * Purpose:
 *
 * This SnortSam plugin telnet's into one or more Cisco routers and issues
 * a route command to effectively “null-route” the intruding IP address.
 * SnortSam will remove the added routes when the blocks expire.
 *
 *
 */

#ifndef __SSP_CISCO_NULLROUTE_C__
#define __SSP_CISCO_NULLROUTE_C__

#include “snortsam.h”
#include “ssp_cisco_nullroute.h”

#include <sys/types.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#ifdef WIN32
#include <winsock.h>
#else
#include <netinet/in.h>
#include <arpa/inet.h>
#endif
/* This routine parses the cisconullroute statements in the config file.
 * It builds a list of routers)

 114

*/
void CiscoNullRouteParse(char *val,char *file,unsigned long line,DATALIST
*plugindatalist)
{ CISCONULLROUTEDATA *ciscop;
 char *p2,msg[STRBUFSIZE+2],*p3;
 struct in_addr routerip;

#ifdef FWSAMDEBUG
 printf(“Debug: [cisconullroute] Plugin Parsing...\n”);
#endif

 if(*val)
 { p2=val;
 while(*p2 && !myisspace(*p2))
 p2++;
 if(*p2)
 *p2++ =0;
 routerip.s_addr=getip(val);
 if(routerip.s_addr) /* If we have a valid IP address
*/
 {
 ciscop=safemalloc(sizeof(CISCONULLROUTEDATA),”ciscoparse”,”ciscop”);
 /* create new router */
 plugindatalist->data=ciscop;
 ciscop->ip.s_addr=routerip.s_addr;
 ciscop->username[0]=ciscop->enablepw[0]=ciscop-
>userlogin=0;
 ciscop->telnetpw=ciscop->username;

 if(*p2)
 { val=p2;
 while(*val && myisspace(*val)) /* now parse the
remaining text */
 val++;
 if(val)
 { p2=val;
 while(*p2 && !myisspace(*p2))
 p2++;
 if(*p2)
 *p2++ =0;
 safecopy(ciscop->username,val); /* save
telnet password */

 p3=strchr(ciscop->username,'/'); /* Check if
a username is given */
 if(p3)
 { *p3++ =0;
 ciscop->telnetpw=p3;
 ciscop->userlogin=TRUE;
 }

 if(*p2)
 /* if we have a second password */
 { while(*p2 && myisspace(*p2))
 p2++;
 safecopy(ciscop->enablepw,p2);/* it
would be the enable password */
 }
 else
 safecopy(ciscop->enablepw,ciscop-
>telnetpw); /* if only one password was found, use it for both */
 }

 115

 }
 if(!ciscop->telnetpw[0])
 { snprintf(msg,sizeof(msg)-1,”Error: [%s: %lu] Cisco
Router defined without passwords!”,file,line);
 logmessage(1,msg,”cisconullroute”,0);
 free(ciscop);
 plugindatalist->data=NULL;
 }
#ifdef FWSAMDEBUG
 else
 printf(“Debug: [cisconullroute] Adding Cisco Router:
IP \”%s\”, PW \”%s\”, EN \”%s\”\n”,inettoa(ciscop->ip.s_addr),ciscop-
>telnetpw,ciscop->enablepw);
#endif
 }
 else
 { snprintf(msg,sizeof(msg)-1,”Error: [%s: %lu] Invalid
CiscoNullRoute parameter '%s' ignored.”,file,line,val);
 logmessage(1,msg,”cisconullroute”,0);
 }
 }
 else
 { snprintf(msg,sizeof(msg)-1,”Error: [%s: %lu] Empty CiscoNullRoute
parameter.”,file,line);
 logmessage(1,msg,”cisconullroute”,0);
 }
}

/* This routine initiates the block. It walks the list of routers
 * telnet's in, and issues the route command.
 */
void CiscoNullRouteBlock(BLOCKINFO *bd,void *data)
{ CISCONULLROUTEDATA *ciscop;
 struct sockaddr_in thissocketaddr,routersocketaddr;
 SOCKET routersocket;
 unsigned long flag;
 char cnrmsg[STRBUFSIZE+1],cnrat[STRBUFSIZE+1];
#ifdef FWSAMDEBUG
#ifdef WIN32
 unsigned long threadid=GetCurrentThreadId();
#else
 pthread_t threadid=pthread_self();
#endif
#endif

 if(!data)
 return;
 ciscop=(CISCONULLROUTEDATA *)data;

#ifdef FWSAMDEBUG
 printf(“Debug: [cisconullroute][%lx] Plugin Blocking...\n”,(unsigned
long)threadid);
#endif

 snprintf(cnrat,sizeof(cnrat)-1,”router at %s”,inettoa(ciscop-
>ip.s_addr));

 routersocketaddr.sin_port=htons(23); /* telnet */
 routersocketaddr.sin_addr.s_addr=ciscop->ip.s_addr;
 routersocketaddr.sin_family=AF_INET;

 116

 thissocketaddr.sin_port=htons(0); /* get a dynamic port */
 thissocketaddr.sin_addr.s_addr=0;
 thissocketaddr.sin_family=AF_INET;

 /* create socket */
 routersocket=socket(PF_INET,SOCK_STREAM,IPPROTO_TCP);
 if(routersocket==INVALID_SOCKET)
 { snprintf(cnrmsg,sizeof(cnrmsg)-1,”Error: [cisconullroute] Couldn't
create socket!”);
 logmessage(1,cnrmsg,”cisconullroute”,ciscop->ip.s_addr);
 return;
 }
 /* bind it */
 if(bind(routersocket,(struct sockaddr *)&(thissocketaddr),sizeof(struct
sockaddr)))
 { snprintf(cnrmsg,sizeof(cnrmsg)-1,”Error: [cisconullroute] Couldn't
bind socket!”);
 logmessage(1,cnrmsg,”ciscocnullroute”,ciscop->ip.s_addr);
 return;
 }
 /* and connect to router */
 if(connect(routersocket,(struct sockaddr
*)&routersocketaddr,sizeof(struct sockaddr)))
 { snprintf(cnrmsg,sizeof(cnrmsg)-1,”Error: [cisconullroute] Could
not connect to %s! Will try later.”,cnrat);
 logmessage(1,cnrmsg,”cisconullroute”,ciscop->ip.s_addr);
 }
 else
 { do
 {
#ifdef FWSAMDEBUG
 printf(“Debug: [cisconullroute][%lx] Connected to
%s.\n”,(unsigned long)threadid,cnrat);
#endif
 flag=-1;
 ioctlsocket(routersocket,FIONBIO,&flag); /* set non
blocking */

 if(ciscop->userlogin)
 {
 if(!sendreceive(routersocket,CNRNETWAIT,”cisconullroute”,ciscop-
>ip,”“,”username”,”waiting for user logon prompt from “,cnrat))
 continue;
 snprintf(cnrmsg,sizeof(cnrmsg)-1,”%s\r”,ciscop-
>username); /* Send username password */

 if(!sendreceive(routersocket,CNRNETWAIT,”cisconullroute”,ciscop-
>ip,cnrmsg,”pass”,”at password prompt from “,cnrat))
 continue;
 snprintf(cnrmsg,sizeof(cnrmsg)-1,”%s\r”,ciscop-
>telnetpw); /* Send telnet password */
 }
 else
 {
 if(!sendreceive(routersocket,CNRNETWAIT,”cisconullroute”,ciscop-
>ip,”“,”pass”,”waiting for logon prompt from “,cnrat))
 continue;
 snprintf(cnrmsg,sizeof(cnrmsg)-1,”%s\r”,ciscop-
>telnetpw); /* Send telnet password */
 }

 117

 if(!sendreceive(routersocket,CNRNETWAIT,”cisconullroute”,ciscop-
>ip,cnrmsg,”>“,”at logon prompt of “,cnrat))
 continue;

 /* Send enable */

 if(!sendreceive(routersocket,CNRNETWAIT,”cisconullroute”,ciscop-
>ip,”enable\r”,”pass”,”at enable command of “,cnrat))
 continue;

 /* Send enable password */
 snprintf(cnrmsg,sizeof(cnrmsg)-1,”%s\r”,ciscop->enablepw);

 if(!sendreceive(routersocket,CNRNETWAIT,”cisconullroute”,ciscop-
>ip,cnrmsg,”#”,”at enable prompt of “,cnrat))
 continue;

 /* Send config */

 if(!sendreceive(routersocket,CNRNETWAIT,”cisconullroute”,ciscop-
>ip,”config t\r”,”#”,”at config command of “,cnrat))
 continue;

 /* send route command */
 snprintf(cnrmsg,sizeof(cnrmsg)-1,”%sip route %s
255.255.255.255 null 0 tag 20\r”,bd->block?”“:”no “,inettoa(bd->blockip));

 if(!sendreceive(routersocket,CNRNETWAIT,”cisconullroute”,ciscop-
>ip,cnrmsg,”#”,”at route command of “,cnrat))
 continue;

 /* End input */

 if(!sendreceive(routersocket,CNRNETWAIT,”cisconullroute”,ciscop-
>ip,”\032”,”#”,”at CTRL-Z of “,cnrat))
 continue;

 /* Save config */

 if(!sendreceive(routersocket,CNRNETWAIT,”cisconullroute”,ciscop-
>ip,”write mem\r”,”#”,”at write mem command of “,cnrat))
 continue;

 /* and we're outta here... */

 if(!sendreceive(routersocket,CNRNETWAIT,”cisconullroute”,ciscop-
>ip,”quit\r”,”“,”at quit command of “,cnrat))
 continue;

 }while(FALSE);
 }
 closesocket(routersocket);
}

#endif /* __SSP_CISCO_NULLROUTE_C__ */

 118

THIS PAGE INTENTIONALLY LEFT BLANK

 119

LIST OF REFERENCES

About, Inc. http://quotations.about.com/od/inspirationquotes/tp/10_inspiration.htm,last
accessed 5 September 2007.

Caswell, Brian, Beale, Jay, Foster, James C. “Snort 2.0 Intrusion Detection,” Syngress,
2003, p. 304.

Cisco. “Remotely Triggered Black Hole Filtering—Destination Based and Source
Based,” Cisco Press, www.cisco.com/warp/public/732/Tech/security/docs/blackhole.pdf,
last accessed 9 July 2007.

Gibson, Steve. “Distributed Reflection Denial of Service,” Gibson Research Corporation,
www.grc.com/dos/drdos.htm, last accessed 7 July 2007.

IETF Secretariat. http://www.ietf.org/rfc/rfc791.txt, last accessed 10 September 2007.

Institution of Electrical and Electronics Engineers. “IEEE P1220, Standard for
Application and Management of the System Engineering Process,” New York, NY, 1994,
p.11.

Internet FAQ Archives. http://www.faqs.org/rfcs/rfc792.html,last accessed 10 September
2007.

Kleffman, Michael D. “Analysis of Effects of BGP Black Hole Routing on a Network
like the NIPRNET.” Master's Thesis, AFIT, 2005, last accessed 7 August 2007.

Lawrence Berkeley National Laboratory. http://www.bro-ids.org/, last accessed 13
September 2007.

Magalhaes, Ricky M. “Host based vs. Network based IDS,”
http://www.windowsecurity.com/articles/Hids_vs_Nids_Part1.html,last accessed 20 July
2007.

Manzano, Yanet. “Tracing the Development of Denial of Service Attacks: A Corporate
Analogy,” ACM Student Magazine, www.acm.org/crossroads/xrds10-
1/tracingDOS.html, last accessed 7 July 2007.

Nanog. The North American Network Operators' Group, www.nanog.org/mtg-
0110/ppt/greene.ppt, last accessed 8 July 2007.

Raju, Peddisetty Naga. “State-of-the-Art Intrusion Detection: Technologies, Challenges
and Evaluation,” Master’s Thesis, Linkoping, 2005, last accessed 20 July 2007.

RFC 1268. www.ietf.org, last accessed 1 August 2007.

 120

Snort.org. http://www.snort.org, last accessed 30 July 2007.

Snort.org. http://www.snort.org/community, last accessed 30 July 2007.

Snort.org. http://www.snort.org/training/, last accessed 13 September 2007.

SnortSam. http://www.snortsam.net/files/snortsam/docs/INSTALL, last accessed 13
September 2007.

Sourcefire. “Building and Operating Snort,” Security Training Program, 2004-2007.

Sourcefire. “Snort Rules,” Security Training Program, 2004-2007.

SoureForge, Inc. http://sourceforge.net/, last accessed 3 September 2007.

Stalling, William. “Network Security Essential, Third Edition,” Pearson Prentice Hall,
2007, p. 340, pp. 342-343.

Stamatelatos, Nikolaos. “A Measurement Study of BGP Black Hole Routing
Performance,” Master's Thesis, September 2006.

tcpdump/libpcap. http://www.tcpdump.org/release/, last accessed 3 September 2007.

The Expect Home Page. http://expect.nist.gov/, last accessed 13 September 2007.

University of Wolverhampton. School of Computing and IT,
www.scit.wlv.ac.uk/~jphb/comms/sockets.html, last accessed 2 August 2007.

Wikipedia. http://en.wikipedia.org/wiki/Bottom-up, last accessed 9 July 2007.

Wikipedia. http://en.wikipedia.org/wiki/Intrusion_detection_system, last accessed 9 July
2007.

Wikipedia. http://en.wikipedia.org/wiki/Plugin, last accessed 2 August 2007.

Wikipedia. http://en.wikipedia.org/wiki/Top-down, last accessed 9 July 2007.

Wikipedia. http://en.wikipedia.org/wiki/Anomaly-based_intrusion_detection_system, last
accessed 30 July 2007.

 121

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library

Naval Postgraduate School
Monterey, CA

3. Geoffrey Xie

Naval Postgraduate School
Monterey, CA

4. J.D. Fulp

Naval Postgraduate School
Monterey, CA

5 Vinay Puri

Naval Postgraduate School
Monterey, CA

6. Neal Ziring

National Security Agency
Fort Meade, MD

7. Terry Dossey

National Security Agency
Fort Meade, MD

8. C. Boger

Naval Postgraduate School
Monterey, CA

9. Elliott Ray
 Naval Postgraduate School
 Monterey, CA

